+ - 0:00:00
Notes for current slide
Notes for next slide

Spatial Data Wrangling with R

A Comprehensive Guide

Long Nguyen

Workshops for Ukraine · 2023-04-06

1 / 54
2 / 54

Today's objectives

  • Systematic, fundamental overview of spatial data manipulation techniques
3 / 54

Today's objectives

  • Systematic, fundamental overview of spatial data manipulation techniques

  • Focus on operations on vector data geometries, implemented by the {sf} package

3 / 54

Today's objectives

  • Systematic, fundamental overview of spatial data manipulation techniques

  • Focus on operations on vector data geometries, implemented by the {sf} package

Predicates
(return boolean)
Measures
(return number)
Transformers
(return geometry)
Unary x x
Binary x x x
N-ary x
3 / 54

Today's objectives

  • Systematic, fundamental overview of spatial data manipulation techniques

  • Focus on operations on vector data geometries, implemented by the {sf} package

Predicates
(return boolean)
Measures
(return number)
Transformers
(return geometry)
Unary x x
Binary x x x
N-ary x
  • Raster data operations to complement vector data attributes
3 / 54

Today's objectives

  • Systematic, fundamental overview of spatial data manipulation techniques

  • Focus on operations on vector data geometries, implemented by the {sf} package

Predicates
(return boolean)
Measures
(return number)
Transformers
(return geometry)
Unary x x
Binary x x x
N-ary x
  • Raster data operations to complement vector data attributes

  • Leans heavily on the philosophy of {dplyr} and {ggplot2}

3 / 54

Non-goals

4 / 54

Non-goals

4 / 54

Non-goals

4 / 54

Topics I'll be hand-wavy about

  • Data import/export

    • Import: sf::read_sf() for vector data, terra::rast() for raster data

    • Export: sf::write_sf(), terra::writeRaster()

5 / 54

Topics I'll be hand-wavy about

  • Data import/export

    • Import: sf::read_sf() for vector data, terra::rast() for raster data

    • Export: sf::write_sf(), terra::writeRaster()

  • Coordinate reference systems (CRSs)

    • Important!

    • But default just works most of the time (esp. since {sf} 1.0.0)

    • Further reading: Chapter 7 of Geocomputation with R

5 / 54

Motivating Example: Non-Contiguous Cartogram of 2020 US Election

6 / 54
library(sf)
library(tidyverse)
us_states <- read_sf("https://lo-ng.netlify.app/slides/data/us-states-albers.geojson")
us_states
Simple feature collection with 51 features and 2 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -2036903 ymin: -2465746 xmax: 2521918 ymax: 731860.1
Projected CRS: NAD27 / US National Atlas Equal Area
# A tibble: 51 × 3
fips_state name geometry
<chr> <chr> <MULTIPOLYGON [m]>
1 04 Arizona (((-805018.1 -844577, -820986 -1004768, -847…
2 05 Arkansas (((558984.4 -1308375, 555289.4 -1249633, 542…
3 06 California (((-1857115 -997259, -1840861 -998344.4, -18…
4 08 Colorado (((-340987 -435780.7, -241136.9 -439894.2, -…
5 09 Connecticut (((2279630 65808.41, 2301408 2913.019, 23000…
6 11 District of Columbia (((1955464 -402054, 1960244 -393610.9, 19740…
7 13 Georgia (((1426586 -978019.1, 1484709 -967004.7, 153…
8 17 Illinois (((998533.7 -204278.7, 998810.4 -225676.6, 1…
9 18 Indiana (((1305615 -535053.6, 1300530 -540420.3, 131…
10 22 Louisiana (((558984.4 -1308375, 729349.1 -1295816, 828…
# ℹ 41 more rows
6 / 54
library(sf)
library(tidyverse)
us_states <- read_sf("https://lo-ng.netlify.app/slides/data/us-states-albers.geojson")
us_votes <- read_rds("https://lo-ng.netlify.app/slides/data/us_votes.rds")
us_states |>
left_join(us_votes) |>
select(called, pop18)
Simple feature collection with 51 features and 2 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -2036903 ymin: -2465746 xmax: 2521918 ymax: 731860.1
Projected CRS: NAD27 / US National Atlas Equal Area
# A tibble: 51 × 3
called pop18 geometry
<chr> <dbl> <MULTIPOLYGON [m]>
1 D 7171646 (((-805018.1 -844577, -820986 -1004768, -847281.8 -1277600, …
2 R 3013825 (((558984.4 -1308375, 555289.4 -1249633, 542141.8 -1246005, …
3 D 39557045 (((-1857115 -997259, -1840861 -998344.4, -1833809 -1009424, …
4 D 5695564 (((-340987 -435780.7, -241136.9 -439894.2, -172639.7 -441887…
5 D 3572665 (((2279630 65808.41, 2301408 2913.019, 2300040 -8879.752, 22…
6 D 702455 (((1955464 -402054, 1960244 -393610.9, 1974075 -401534.9, 19…
7 D 10519475 (((1426586 -978019.1, 1484709 -967004.7, 1534994 -955419.9, …
8 D 12741080 (((998533.7 -204278.7, 998810.4 -225676.6, 1014867 -248685, …
9 R 6691878 (((1305615 -535053.6, 1300530 -540420.3, 1313039 -560392.6, …
10 R 4659978 (((558984.4 -1308375, 729349.1 -1295816, 828091.2 -1286761, …
# ℹ 41 more rows
6 / 54
library(sf)
library(tidyverse)
us_states <- read_sf("https://lo-ng.netlify.app/slides/data/us-states-albers.geojson")
us_votes <- read_rds("https://lo-ng.netlify.app/slides/data/us_votes.rds")
us_states |>
left_join(us_votes) |>
select(called, pop18) |>
ggplot(aes(fill = called)) +
geom_sf(show.legend = FALSE) +
scale_fill_manual(values = c("#25428f", "#c70000")) +
coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) +
theme_void()

6 / 54
library(sf)
library(tidyverse)
us_states <- read_sf("https://lo-ng.netlify.app/slides/data/us-states-albers.geojson")
us_votes <- read_rds("https://lo-ng.netlify.app/slides/data/us_votes.rds")
us_states |>
left_join(us_votes) |>
select(called, pop18) |>
mutate(
area = as.numeric(st_area(geometry)),
scaled_area = pop18 / max(pop18) *
area[which.max(pop18)],
scale = sqrt(scaled_area / area),
cent = st_centroid(geometry),
geometry = (geometry - cent) * scale + cent
) |>
ggplot(aes(fill = called)) +
geom_sf(show.legend = FALSE) +
scale_fill_manual(values = c("#25428f", "#c70000")) +
coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) +
theme_void()

6 / 54

Spatial Vector Data in R

7 / 54

Points, lines, and polygons

8 / 54

Simple Features

  • Standard for representing spatial vector data
9 / 54

Simple Features

  • Standard for representing spatial vector data

  • Simple Feature geometries:

POINT (2 2)
MULTIPOINT ((0 1), (2 2), (4 1), (2 3), (1 4))
LINESTRING (1 1, 5 5, 5 6, 4 6, 3 4, 2 3)
MULTILINESTRING ((1 1, 5 5, 5 6, 4 6, 3 4, 2 3), (3 0, 4 1, 2 1))
POLYGON ((2 1, 3 1, 5 2, 6 3, 5 3, 4 4, 3 4, 1 3, 2 1), (2 2, 3 3, 4 3, 4 2, 2 2))
MULTIPOLYGON (((2 1, 3 1, 5 2, 6 3, 5 3, 4 4, 3 4, 1 3, 2 1), (2 2, 3 3, 4 3, 4 2, 2 2)), ((3 5, 4 5, 5 6, 3 7, 2 6, 3 5)))
  • Simple: linestrings and polygons are built from points connected by straight line segments
9 / 54

Simple Features

  • Standard for representing spatial vector data

  • Simple Feature geometries:

POINT (2 2)
MULTIPOINT ((0 1), (2 2), (4 1), (2 3), (1 4))
LINESTRING (1 1, 5 5, 5 6, 4 6, 3 4, 2 3)
MULTILINESTRING ((1 1, 5 5, 5 6, 4 6, 3 4, 2 3), (3 0, 4 1, 2 1))
POLYGON ((2 1, 3 1, 5 2, 6 3, 5 3, 4 4, 3 4, 1 3, 2 1), (2 2, 3 3, 4 3, 4 2, 2 2))
MULTIPOLYGON (((2 1, 3 1, 5 2, 6 3, 5 3, 4 4, 3 4, 1 3, 2 1), (2 2, 3 3, 4 3, 4 2, 2 2)), ((3 5, 4 5, 5 6, 3 7, 2 6, 3 5)))
  • Simple: linestrings and polygons are built from points connected by straight line segments
  • Features can have other non-geographic properties: attributes
9 / 54

Package {sf}

  • Provides support for Simple Features in R

  • Represents Simple Features as records in a data frame:

us_states
Simple feature collection with 51 features and 2 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -2036903 ymin: -2465746 xmax: 2521918 ymax: 731860.1
Projected CRS: NAD27 / US National Atlas Equal Area
# A tibble: 51 × 3
fips_state name geometry
<chr> <chr> <MULTIPOLYGON [m]>
1 04 Arizona (((-805018.1 -844577, -8209…
2 05 Arkansas (((558984.4 -1308375, 55528…
3 06 California (((-1857115 -997259, -18408…
4 08 Colorado (((-340987 -435780.7, -2411…
# ℹ 47 more rows




  • sf object: data frame with spatial geometries

  • Every row is a single Simple Feature consisting of attributes and geometry

  • geometry: list column that contains geometries (class sfc)

10 / 54

Package {sf}

  • Implements operations on Simple Feature geometries

  • st_*() functions that work on sf and sfc objects, following PostGIS convention

11 / 54

Operations on Attributes

12 / 54

Subsetting

(de_nuts3 <- read_sf("https://lo-ng.netlify.app/slides/data/de-nuts3.geojson"))
Simple feature collection with 401 features and 2 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 4031952 ymin: 2684075 xmax: 4671180 ymax: 3543086
Projected CRS: ETRS89-extended / LAEA Europe
# A tibble: 401 × 3
nuts name geometry
<chr> <chr> <MULTIPOLYGON [m]>
1 DE254 Nürnberg, Kreisfreie Stadt (((4395582 2936363, 4406401 2929710, 44059…
2 DE255 Schwabach, Kreisfreie Stadt (((4399488 2914611, 4399340 2912229, 43949…
3 DE256 Ansbach, Landkreis (((4384059 2916281, 4386305 2905631, 43820…
4 DE257 Erlangen-Höchstadt (((4387813 2962179, 4400140 2944483, 44135…
5 DE234 Amberg-Sulzbach (((4461918 2902744, 4434038 2924102, 44360…
6 DE235 Cham (((4552189 2900592, 4548518 2895155, 45230…
7 DE236 Neumarkt i. d. OPf. (((4461918 2902744, 4462116 2899857, 44516…
8 DE237 Neustadt a. d. Waldnaab (((4508712 2939911, 4474093 2939442, 44601…
9 DE238 Regensburg, Landkreis (((4502290 2882921, 4497804 2865770, 44780…
10 DE239 Schwandorf (((4508712 2939911, 4511976 2937497, 45118…
# ℹ 391 more rows
13 / 54

Subsetting

de_nuts3 |>
filter(startsWith(name, "A"))
Simple feature collection with 19 features and 2 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 4091473 ymin: 2775241 xmax: 4539907 ymax: 3403586
Projected CRS: ETRS89-extended / LAEA Europe
# A tibble: 19 × 3
nuts name geometry
* <chr> <chr> <MULTIPOLYGON [m]>
1 DE256 Ansbach, Landkreis (((4384059 2916281, 4386305 2905631, 4…
2 DE234 Amberg-Sulzbach (((4461918 2902744, 4434038 2924102, 4…
3 DE251 Ansbach, Kreisfreie Stadt (((4356772 2910520, 4363699 2914647, 4…
4 DE261 Aschaffenburg, Kreisfreie Stadt (((4266274 2980543, 4256895 2980211, 4…
5 DE264 Aschaffenburg, Landkreis (((4278414 2997441, 4279506 2974455, 4…
6 DE271 Augsburg, Kreisfreie Stadt (((4388654 2794282, 4381950 2800775, 4…
7 DE145 Alb-Donau-Kreis (((4338058 2821924, 4330908 2815722, 4…
8 DE214 Altötting (((4539907 2792493, 4525936 2781512, 4…
9 DE231 Amberg, Kreisfreie Stadt (((4449020 2927007, 4457142 2934255, 4…
10 DEG0M Altenburger Land (((4504767 3099894, 4507488 3093634, 4…
11 DEB12 Ahrweiler (((4132529 3043937, 4106413 3030730, 4…
12 DEB13 Altenkirchen (Westerwald) (((4169961 3092710, 4182511 3066932, 4…
13 DEB3B Alzey-Worms (((4205818 2966931, 4209134 2959072, 4…
14 DEE04 Altmarkkreis Salzwedel (((4428877 3262216, 4420644 3255037, 4…
15 DEE05 Anhalt-Bitterfeld (((4483990 3217678, 4477747 3209147, 4…
16 DE275 Aichach-Friedberg (((4416814 2818744, 4418060 2816287, 4…
17 DE276 Augsburg, Landkreis (((4389187 2830822, 4386413 2816502, 4…
18 DE946 Ammerland (((4208210 3345003, 4201080 3344123, 4…
19 DE947 Aurich (((4141718 3363568, 4136206 3369633, 4…
14 / 54

Joining

de_nuts3_pop <- de_nuts3 |>
left_join(
# Downloaded from inkar.de
read_csv("https://lo-ng.netlify.app/slides/data/de_pop20.csv"),
by = join_by(nuts == nuts)
)
Simple feature collection with 401 features and 3 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 4031952 ymin: 2684075 xmax: 4671180 ymax: 3543086
Projected CRS: ETRS89-extended / LAEA Europe
# A tibble: 401 × 4
nuts name geometry pop20
<chr> <chr> <MULTIPOLYGON [m]> <dbl>
1 DE254 Nürnbe… (((4395582 2936363, 4406… 515543
2 DE255 Schwab… (((4399488 2914611, 4399… 41056
3 DE256 Ansbac… (((4384059 2916281, 4386… 185316
4 DE257 Erlang… (((4387813 2962179, 4400… 138105
5 DE234 Amberg… (((4461918 2902744, 4434… 102998
6 DE235 Cham (((4552189 2900592, 4548… 128094
# ℹ 395 more rows
15 / 54

Joining

de_nuts3_pop <- de_nuts3 |>
left_join(
# Downloaded from inkar.de
read_csv("https://lo-ng.netlify.app/slides/data/de_pop20.csv"),
by = join_by(nuts == nuts)
)
Simple feature collection with 401 features and 3 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 4031952 ymin: 2684075 xmax: 4671180 ymax: 3543086
Projected CRS: ETRS89-extended / LAEA Europe
# A tibble: 401 × 4
nuts name geometry pop20
<chr> <chr> <MULTIPOLYGON [m]> <dbl>
1 DE254 Nürnbe… (((4395582 2936363, 4406… 515543
2 DE255 Schwab… (((4399488 2914611, 4399… 41056
3 DE256 Ansbac… (((4384059 2916281, 4386… 185316
4 DE257 Erlang… (((4387813 2962179, 4400… 138105
5 DE234 Amberg… (((4461918 2902744, 4434… 102998
6 DE235 Cham (((4552189 2900592, 4548… 128094
# ℹ 395 more rows
  • New since {dplyr} 1.1.0: by = join_by(...)

    Old syntax: by = c("nuts" = "nuts")

    Shortcut: by = join_by(nuts)
    (old syntax: by = "nuts")

  • Allows for other types of joins than equality joins (==)

15 / 54

Aggregation

de_nuts1_pop <- de_nuts3_pop |>
mutate(nuts = str_sub(nuts, 1, 3)) |>
group_by(nuts) |>
summarise(pop = sum(pop20))
Simple feature collection with 16 features and 2 fields
Geometry type: GEOMETRY
Dimension: XY
Bounding box: xmin: 4031952 ymin: 2684075 xmax: 4671180 ymax: 3543086
Projected CRS: ETRS89-extended / LAEA Europe
# A tibble: 16 × 3
nuts pop geometry
<chr> <dbl> <GEOMETRY [m]>
1 DE1 11103043 POLYGON ((4162515 2721450, 4148793 2716636, 4142867 2719236, 4…
2 DE2 13140183 POLYGON ((4287757 2714352, 4297839 2721916, 4325984 2728191, 4…
3 DE3 3664088 MULTIPOLYGON (((4565855 3276636, 4570054 3269038, 4574088 3265…
4 DE4 2531071 POLYGON ((4556978 3153409, 4544296 3148678, 4541206 3166243, 4…
# ℹ 12 more rows
16 / 54

Aggregation

de_nuts1_pop <- de_nuts3_pop |>
mutate(nuts = str_sub(nuts, 1, 3)) |>
group_by(nuts) |>
summarise(pop = sum(pop20))
Simple feature collection with 16 features and 2 fields
Geometry type: GEOMETRY
Dimension: XY
Bounding box: xmin: 4031952 ymin: 2684075 xmax: 4671180 ymax: 3543086
Projected CRS: ETRS89-extended / LAEA Europe
# A tibble: 16 × 3
nuts pop geometry
<chr> <dbl> <GEOMETRY [m]>
1 DE1 11103043 POLYGON ((4162515 2721450, 4148793 2716636, 4142867 2719236, 4…
2 DE2 13140183 POLYGON ((4287757 2714352, 4297839 2721916, 4325984 2728191, 4…
3 DE3 3664088 MULTIPOLYGON (((4565855 3276636, 4570054 3269038, 4574088 3265…
4 DE4 2531071 POLYGON ((4556978 3153409, 4544296 3148678, 4541206 3166243, 4…
# ℹ 12 more rows
  • {sf} silently creates a union out of geometries in the same group
16 / 54

Operations on Simple Feature Geometries

Predicates Measures Transformers
Unary x x
Binary x x x
N-ary x
17 / 54

Unary measures

18 / 54
  • st_length(): length of a LINESTRING or MULTILINESTRING geometry
19 / 54
  • st_length(): length of a LINESTRING or MULTILINESTRING geometry

  • st_area(): area of a geometry

us_states |>
mutate(area = st_area(geometry))
Simple feature collection with 51 features and 3 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -2036903 ymin: -2465746 xmax: 2521918 ymax: 731860.1
Projected CRS: NAD27 / US National Atlas Equal Area
# A tibble: 51 × 4
fips_state name geometry area
* <chr> <chr> <MULTIPOLYGON [m]> [m^2]
1 04 Arizona (((-805018.1 -844577, -8… 2.95e11
2 05 Arkansas (((558984.4 -1308375, 55… 1.37e11
3 06 California (((-1857115 -997259, -18… 4.09e11
4 08 Colorado (((-340987 -435780.7, -2… 2.70e11
5 09 Connecticut (((2279630 65808.41, 230… 1.30e10
6 11 District of… (((1955464 -402054, 1960… 2.06e 8
7 13 Georgia (((1426586 -978019.1, 14… 1.53e11
8 17 Illinois (((998533.7 -204278.7, 9… 1.46e11
9 18 Indiana (((1305615 -535053.6, 13… 9.36e10
10 22 Louisiana (((558984.4 -1308375, 72… 1.22e11
# ℹ 41 more rows
19 / 54

Unary transformers

20 / 54

st_centroid()

us_states |>
ggplot() +
geom_sf() +
theme_void()

20 / 54

st_centroid()

us_centroids <-
us_states |>
st_centroid()
us_centroids |>
ggplot() +
geom_sf() +
theme_void()

20 / 54

st_point_on_surface()

bremen <- de_nuts1_pop |>
filter(nuts == "DE5")
bremen |>
ggplot() +
geom_sf() +
coord_sf(
xlim = st_bbox(bremen)[c(1, 3)],
ylim = st_bbox(bremen)[c(2, 4)]
) +
theme_void()

20 / 54

st_point_on_surface()

bremen <- de_nuts1_pop |>
filter(nuts == "DE5")
bremen |>
st_centroid() |>
ggplot() +
geom_sf() +
coord_sf(
xlim = st_bbox(bremen)[c(1, 3)],
ylim = st_bbox(bremen)[c(2, 4)]
) +
theme_void()

20 / 54

st_point_on_surface()

bremen <- de_nuts1_pop |>
filter(nuts == "DE5")
bremen |>
st_point_on_surface() |>
ggplot() +
geom_sf() +
coord_sf(
xlim = st_bbox(bremen)[c(1, 3)],
ylim = st_bbox(bremen)[c(2, 4)]
) +
theme_void()

20 / 54

st_buffer()

us_centroids |>
ggplot() +
geom_sf() +
theme_void()

20 / 54

st_buffer()

st_buffer(us_centroids, 50000) |>
ggplot() +
geom_sf() +
theme_void()

20 / 54

st_buffer()

st_buffer(us_centroids, 100000) |>
ggplot() +
geom_sf() +
theme_void()

20 / 54

st_buffer()

st_buffer(us_centroids, 200000) |>
ggplot() +
geom_sf() +
theme_void()

20 / 54

Affine transformations

Linear transformations that preserve lines and parallelism, but may change the orientation, scale, and position of objects

us_states |>
#
ggplot() +
geom_sf() +
coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) +
theme_void()

21 / 54

Affine transformations

Linear transformations that preserve lines and parallelism, but may change the orientation, scale, and position of objects

us_states |>
mutate(geometry = geometry + c(-100000, 100000)) |>
ggplot() +
geom_sf() +
coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) +
theme_void()

22 / 54

Affine transformations

Linear transformations that preserve lines and parallelism, but may change the orientation, scale, and position of objects

us_states |>
mutate(geometry = geometry * 0.5) |>
ggplot() +
geom_sf() +
coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) +
theme_void()

23 / 54

Affine transformations

Linear transformations that preserve lines and parallelism, but may change the orientation, scale, and position of objects

us_states |>
mutate(geometry = geometry - us_centroids$geometry) |>
ggplot() +
geom_sf() +
coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) +
theme_void()

24 / 54

Affine transformations

Linear transformations that preserve lines and parallelism, but may change the orientation, scale, and position of objects

us_states |>
mutate(geometry = (geometry - us_centroids$geometry) * 0.5) |>
ggplot() +
geom_sf() +
coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) +
theme_void()

25 / 54

Affine transformations

Linear transformations that preserve lines and parallelism, but may change the orientation, scale, and position of objects

us_states |>
mutate(geometry = (geometry - us_centroids$geometry) * 0.5 + us_centroids$geometry) |>
ggplot() +
geom_sf() +
coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) +
theme_void()

26 / 54

st_cast(): Type transformations

us_states |>
select(name) |>
print(width = 48)
Simple feature collection with 51 features and 1 field
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -2036903 ymin: -2465746 xmax: 2521918 ymax: 731860.1
Projected CRS: NAD27 / US National Atlas Equal Area
# A tibble: 51 × 2
name geometry
<chr> <MULTIPOLYGON [m]>
1 Arizona (((-805018.1 -844577, -8…
2 Arkansas (((558984.4 -1308375, 55…
3 California (((-1857115 -997259, -18…
4 Colorado (((-340987 -435780.7, -2…
5 Connecticut (((2279630 65808.41, 230…
6 District of Columb… (((1955464 -402054, 1960…
7 Georgia (((1426586 -978019.1, 14…
8 Illinois (((998533.7 -204278.7, 9…
9 Indiana (((1305615 -535053.6, 13…
10 Louisiana (((558984.4 -1308375, 72…
# ℹ 41 more rows
26 / 54

st_cast(): Type transformations

us_states |>
select(name) |>
st_cast("MULTILINESTRING") |>
print(width = 48)
Simple feature collection with 51 features and 1 field
Geometry type: MULTILINESTRING
Dimension: XY
Bounding box: xmin: -2036903 ymin: -2465746 xmax: 2521918 ymax: 731860.1
Projected CRS: NAD27 / US National Atlas Equal Area
# A tibble: 51 × 2
name geometry
<chr> <MULTILINESTRING [m]>
1 Arizona ((-805018.1 -844577, -82…
2 Arkansas ((558984.4 -1308375, 555…
3 California ((-1857115 -997259, -184…
4 Colorado ((-340987 -435780.7, -24…
5 Connecticut ((2279630 65808.41, 2301…
6 District of Columb… ((1955464 -402054, 19602…
7 Georgia ((1426586 -978019.1, 148…
8 Illinois ((998533.7 -204278.7, 99…
9 Indiana ((1305615 -535053.6, 130…
10 Louisiana ((558984.4 -1308375, 729…
# ℹ 41 more rows
26 / 54

st_cast(): Type transformations

us_states |>
select(name) |>
st_cast("MULTILINESTRING") |>
mutate(
border_len = st_length(geometry)
) |>
arrange(desc(border_len)) |>
print(width = 48)
Simple feature collection with 51 features and 2 fields
Geometry type: MULTILINESTRING
Dimension: XY
Bounding box: xmin: -2036903 ymin: -2465746 xmax: 2521918 ymax: 731860.1
Projected CRS: NAD27 / US National Atlas Equal Area
# A tibble: 51 × 3
name geometry border_len
<chr> <MULTILINESTRING [m]> [m]
1 Alaska ((-1516285 -2108476, -15… 6138253.
2 Texas ((513575.4 -1242958, 526… 4735889.
3 Califor… ((-1857115 -997259, -184… 3606845.
4 Michigan ((1115493 184361.4, 1124… 3499197.
5 Montana ((-875690.5 1111.16, -88… 2825510.
6 Florida ((1876927 -2050256, 1894… 2776267.
7 Idaho ((-875690.5 1111.16, -91… 2566386.
8 Minneso… ((708640.3 -128513.3, 58… 2534621.
9 New Mex… ((-621546.9 -1440456, -7… 2374297.
10 Virginia ((2138105 -453486.6, 213… 2343343.
# ℹ 41 more rows
26 / 54

Binary predicates (and spatial joins)

27 / 54

Topological relations: spatial relationships between two objects

st_*(x, y) → boolean

(Geocomputation with R, Chapter 4)

28 / 54

Spatial joins

bavaria <- de_nuts1_pop |>
filter(nuts == "DE2")
st_join(
de_nuts3,
bavaria,
join = st_intersects,
) |>
ggplot() +
geom_sf() +
geom_sf(data = bavaria, linewidth = 1, fill = NA) +
coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) +
theme_void()

Nothing happened 🤔

29 / 54

Spatial joins

bavaria <- de_nuts1_pop |>
filter(nuts == "DE2")
st_join(
de_nuts3,
bavaria,
join = st_intersects,
left = FALSE # Performs inner join
) |>
ggplot() +
geom_sf() +
geom_sf(data = bavaria, linewidth = 1, fill = NA) +
coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) +
theme_void()

30 / 54

Spatial joins

bavaria <- de_nuts1_pop |>
filter(nuts == "DE2")
st_join(
de_nuts3,
bavaria,
join = st_within,
left = FALSE # Performs inner join
) |>
ggplot() +
geom_sf() +
geom_sf(data = bavaria, linewidth = 1, fill = NA) +
coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) +
theme_void()

31 / 54

Spatial joins

bavaria <- de_nuts1_pop |>
filter(nuts == "DE2")
st_join(
de_nuts3,
bavaria,
join = st_touches,
left = FALSE # Performs inner join
) |>
ggplot() +
geom_sf() +
geom_sf(data = bavaria, linewidth = 1, fill = NA) +
coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) +
theme_void()

32 / 54

Spatial joins

bavaria <- de_nuts1_pop |>
filter(nuts == "DE2")
st_join(
de_nuts3,
bavaria,
join = st_disjoint,
left = FALSE # Performs inner join
) |>
ggplot() +
geom_sf() +
geom_sf(data = bavaria, linewidth = 1, fill = NA) +
coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) +
theme_void()

33 / 54

Spatial joins

bavaria <- de_nuts1_pop |>
filter(nuts == "DE2")
st_join(
de_nuts3,
bavaria,
join = st_is_within_distance, dist = 100000,
left = FALSE # Performs inner join
) |>
ggplot() +
geom_sf() +
geom_sf(data = bavaria, linewidth = 1, fill = NA) +
coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) +
theme_void()

34 / 54

Spatial joins

bavaria <- de_nuts1_pop |>
filter(nuts == "DE2")
st_join(
st_centroid(de_nuts3),
bavaria,
join = st_is_within_distance, dist = 100000,
left = FALSE # Performs inner join
) |>
ggplot() +
geom_sf() +
geom_sf(data = bavaria, linewidth = 1, fill = NA) +
coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) +
theme_void()

35 / 54

Spatial joins

bavaria <- de_nuts1_pop |>
filter(nuts == "DE2")
st_join(
st_centroid(de_nuts3),
bavaria,
join = negate(st_is_within_distance),
dist = 100000,
left = FALSE # Performs inner join
) |>
ggplot() +
geom_sf() +
geom_sf(data = bavaria, linewidth = 1, fill = NA) +
coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) +
theme_void()

36 / 54

Binary measures

37 / 54

st_distance()

Returns a numeric matrix of length(x) rows and length(y) columns

bielefeld <- de_nuts3 |>
filter(str_detect(name, "Bielefeld"))
de_nuts3 |>
mutate(dist = st_distance(
x = geometry,
y = bielefeld
)[, 1]) |>
arrange(dist) |>
print(width = 60)
Simple feature collection with 401 features and 3 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 4031952 ymin: 2684075 xmax: 4671180 ymax: 3543086
Projected CRS: ETRS89-extended / LAEA Europe
# A tibble: 401 × 4
nuts name geometry dist
<chr> <chr> <MULTIPOLYGON [m]> [m]
1 DEA41 Bielefeld, Kreisf… (((4228708 3217545, 4225… 0
2 DEA42 Gütersloh (((4216273 3222309, 4214… 0
3 DEA43 Herford (((4247622 3231061, 4228… 0
4 DEA45 Lippe (((4263781 3220253, 4273… 0
5 DE94E Osnabrück, Landkr… (((4206125 3266872, 4205… 4471.
6 DEA47 Paderborn (((4249193 3187118, 4250… 9360.
7 DEA46 Minden-Lübbecke (((4261478 3256200, 4252… 17729.
8 DEA38 Warendorf (((4190451 3218063, 4195… 20998.
9 DEA5B Soest (((4210655 3179982, 4221… 26458.
10 DE928 Schaumburg (((4283343 3240666, 4265… 27191.
# ℹ 391 more rows
38 / 54

st_distance()

Returns a numeric matrix of length(x) rows and length(y) columns

bielefeld <- de_nuts3 |>
filter(str_detect(name, "Bielefeld"))
de_nuts3 |>
mutate(dist = st_distance(
x = geometry,
y = st_centroid(bielefeld)
)[, 1]) |>
arrange(dist) |>
print(width = 60)
Simple feature collection with 401 features and 3 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 4031952 ymin: 2684075 xmax: 4671180 ymax: 3543086
Projected CRS: ETRS89-extended / LAEA Europe
# A tibble: 401 × 4
nuts name geometry dist
<chr> <chr> <MULTIPOLYGON [m]> [m]
1 DEA41 Bielefeld, Kreisf… (((4228708 3217545, 4225… 0
2 DEA42 Gütersloh (((4216273 3222309, 4214… 5866.
3 DEA45 Lippe (((4263781 3220253, 4273… 6058.
4 DEA43 Herford (((4247622 3231061, 4228… 7301.
5 DE94E Osnabrück, Landkr… (((4206125 3266872, 4205… 14625.
6 DEA47 Paderborn (((4249193 3187118, 4250… 19621.
7 DEA46 Minden-Lübbecke (((4261478 3256200, 4252… 25521.
8 DEA38 Warendorf (((4190451 3218063, 4195… 28652.
9 DEA5B Soest (((4210655 3179982, 4221… 34279.
10 DE928 Schaumburg (((4283343 3240666, 4265… 36136.
# ℹ 391 more rows
39 / 54

Binary & n-ary transformers

40 / 54
st_buffer(us_centroids, 100000) |>
filter(name %in% c("Massachusetts", "Connecticut")) |>
st_intersection() |>
ggplot() +
geom_sf(aes(fill = factor(n.overlaps)), show.legend = FALSE) +
geom_sf_text(aes(label = n.overlaps)) +
theme_void()

#
st_buffer(us_centroids, 100000) |>
filter(name %in% c("Massachusetts", "Connecticut")) |>
st_union() |>
ggplot() +
geom_sf() +
theme_void()

st_buffer(us_centroids, 100000) |>
filter(name %in% c("Massachusetts", "Connecticut")) |>
st_difference() |>
slice(2) |>
ggplot() +
geom_sf() +
theme_void()

st_buffer(us_centroids, 100000) |>
filter(name %in% c("Massachusetts", "Connecticut")) |>
st_geometry() |>
do.call(what = st_sym_difference) |>
ggplot() +
geom_sf() +
theme_void()

41 / 54

Operations on Raster Data

42 / 54

Raster

library(terra)
(de_elevation <- rast(
"https://lo-ng.netlify.app/slides/data/de_elevation.tif"
))
class : SpatRaster
dimensions : 119, 140, 1 (nrow, ncol, nlyr)
resolution : 0.07145545, 0.07145545 (x, y)
extent : 5.50207, 15.50583, 47.00592, 55.50912 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
source : de_elevation.tif
name : elev
min value : -94
max value : 2759
plot(de_elevation)

43 / 54

Reprojection of NUTS-3 polygons to work with elevation raster

(de_nuts3 <- de_nuts3 |>
st_transform(crs(de_elevation)))
Simple feature collection with 401 features and 2 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 5.877085 ymin: 47.27011 xmax: 15.02282 ymax: 54.98211
Geodetic CRS: WGS 84
# A tibble: 401 × 3
nuts name geometry
* <chr> <chr> <MULTIPOLYGON [°]>
1 DE254 Nürnberg, Kreisfreie Stadt (((11.03021 49.53537, 11.17818 49.47409, 1…
2 DE255 Schwabach, Kreisfreie Stadt (((11.07981 49.33928, 11.07731 49.31788, 1…
3 DE256 Ansbach, Landkreis (((10.86784 49.35613, 10.89699 49.26011, 1…
4 DE257 Erlangen-Höchstadt (((10.92734 49.76843, 11.09481 49.6078, 11…
5 DE234 Amberg-Sulzbach (((11.93422 49.22107, 11.55776 49.41904, 1…
6 DE235 Cham (((13.17091 49.17358, 13.11751 49.12614, 1…
7 DE236 Neumarkt i. d. OPf. (((11.93422 49.22107, 11.9359 49.19507, 11…
8 DE237 Neustadt a. d. Waldnaab (((12.59378 49.54219, 12.11549 49.54795, 1…
9 DE238 Regensburg, Landkreis (((12.47903 49.03199, 12.4102 48.87916, 12…
10 DE239 Schwandorf (((12.59378 49.54219, 12.63766 49.51946, 1…
# ℹ 391 more rows
44 / 54

Cropping & masking

bavaria <- st_transform(bavaria, crs(de_elevation))
de_elevation |>
crop(bavaria) |>
#
plot()

45 / 54

Cropping & masking

bavaria <- st_transform(bavaria, crs(de_elevation))
de_elevation |>
crop(bavaria) |>
mask(bavaria) |>
plot()

46 / 54

Extraction

de_elevation
class : SpatRaster
dimensions : 119, 140, 1 (nrow, ncol, nlyr)
resolution : 0.07145545, 0.07145545 (x, y)
extent : 5.50207, 15.50583, 47.00592, 55.50912 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
source : de_elevation.tif
name : elev
min value : -94
max value : 2759
46 / 54

Extraction

de_elevation |>
extract(bavaria)
ID elev
1 1 626
2 1 474
3 1 375
4 1 366
5 1 624
6 1 616
7 1 658
8 1 630
9 1 488
10 1 385
11 1 325
12 1 301
13 1 335
14 1 346
15 1 568
16 1 602
17 1 609
18 1 635
19 1 555
20 1 558
21 1 539
22 1 554
23 1 464
24 1 526
25 1 596
26 1 469
27 1 391
28 1 325
29 1 297
30 1 310
31 1 314
32 1 317
33 1 314
34 1 325
35 1 357
36 1 372
37 1 381
38 1 383
39 1 415
40 1 460
41 1 514
42 1 516
43 1 593
44 1 611
45 1 600
46 1 582
47 1 565
48 1 523
49 1 534
50 1 564
51 1 388
52 1 414
53 1 431
54 1 449
55 1 360
56 1 312
57 1 309
58 1 316
59 1 313
60 1 315
61 1 360
62 1 355
63 1 348
64 1 334
65 1 335
66 1 337
67 1 355
68 1 342
69 1 345
70 1 370
71 1 408
72 1 457
73 1 522
74 1 573
75 1 618
76 1 619
77 1 588
78 1 571
79 1 533
80 1 562
81 1 595
82 1 619
83 1 393
84 1 329
85 1 338
86 1 349
87 1 335
88 1 299
89 1 298
90 1 301
91 1 323
92 1 341
93 1 343
94 1 343
95 1 351
96 1 339
97 1 343
98 1 356
99 1 338
100 1 337
101 1 324
102 1 322
103 1 325
104 1 322
105 1 318
106 1 325
107 1 350
108 1 390
109 1 432
110 1 454
111 1 505
112 1 564
113 1 585
114 1 578
115 1 596
116 1 603
117 1 605
118 1 593
119 1 588
120 1 348
121 1 416
122 1 420
123 1 313
124 1 291
125 1 289
126 1 281
127 1 268
128 1 302
129 1 313
130 1 298
131 1 301
132 1 337
133 1 354
134 1 340
135 1 294
136 1 312
137 1 369
138 1 345
139 1 328
140 1 312
141 1 302
142 1 321
143 1 377
144 1 415
145 1 389
146 1 382
147 1 375
148 1 363
149 1 397
150 1 406
151 1 474
152 1 551
153 1 627
154 1 715
155 1 646
156 1 597
157 1 572
158 1 556
159 1 536
160 1 162
161 1 256
162 1 228
163 1 320
164 1 376
165 1 377
166 1 356
167 1 372
168 1 298
169 1 268
170 1 266
171 1 276
172 1 289
173 1 294
174 1 283
175 1 251
176 1 231
177 1 247
178 1 288
179 1 301
180 1 275
181 1 293
182 1 346
183 1 350
184 1 326
185 1 297
186 1 286
187 1 334
188 1 449
189 1 504
190 1 468
191 1 462
192 1 437
193 1 376
194 1 369
195 1 382
196 1 429
197 1 552
198 1 707
199 1 782
200 1 661
201 1 612
202 1 581
203 1 557
204 1 545
205 1 551
206 1 145
207 1 164
208 1 230
209 1 317
210 1 389
211 1 422
212 1 401
213 1 324
214 1 292
215 1 271
216 1 254
217 1 261
218 1 303
219 1 292
220 1 269
221 1 247
222 1 229
223 1 223
224 1 242
225 1 296
226 1 332
227 1 345
228 1 335
229 1 308
230 1 301
231 1 278
232 1 283
233 1 336
234 1 433
235 1 500
236 1 464
237 1 456
238 1 465
239 1 459
240 1 398
241 1 383
242 1 421
243 1 524
244 1 640
245 1 677
246 1 614
247 1 623
248 1 628
249 1 601
250 1 547
251 1 526
252 1 557
253 1 605
254 1 172
255 1 237
256 1 333
257 1 403
258 1 430
259 1 397
260 1 289
261 1 261
262 1 279
263 1 267
264 1 260
265 1 306
266 1 300
267 1 283
268 1 263
269 1 244
270 1 231
271 1 238
272 1 333
273 1 387
274 1 389
275 1 356
276 1 324
277 1 299
278 1 280
279 1 272
280 1 322
281 1 448
282 1 492
283 1 459
284 1 434
285 1 434
286 1 456
287 1 475
288 1 450
289 1 439
290 1 462
291 1 501
292 1 513
293 1 528
294 1 607
295 1 615
296 1 560
297 1 504
298 1 513
299 1 536
300 1 613
301 1 672
302 1 659
303 1 229
304 1 214
305 1 304
306 1 346
307 1 344
308 1 306
309 1 238
310 1 244
311 1 281
312 1 296
313 1 283
314 1 257
315 1 261
316 1 283
317 1 256
318 1 226
319 1 230
320 1 258
321 1 363
322 1 389
323 1 372
324 1 343
325 1 323
326 1 306
327 1 296
328 1 282
329 1 297
330 1 365
331 1 438
332 1 435
333 1 437
334 1 442
335 1 456
336 1 515
337 1 504
338 1 501
339 1 484
340 1 460
341 1 459
342 1 486
343 1 555
344 1 546
345 1 500
346 1 493
347 1 529
348 1 580
349 1 660
350 1 689
351 1 230
352 1 287
353 1 307
354 1 301
355 1 323
356 1 322
357 1 281
358 1 254
359 1 272
360 1 241
361 1 223
362 1 262
363 1 319
364 1 380
365 1 387
366 1 366
367 1 341
368 1 322
369 1 302
370 1 293
371 1 298
372 1 301
373 1 294
374 1 358
375 1 434
376 1 474
377 1 484
378 1 481
379 1 482
380 1 471
381 1 509
382 1 505
383 1 462
384 1 450
385 1 443
386 1 477
387 1 485
388 1 472
389 1 472
390 1 532
391 1 645
392 1 705
393 1 276
394 1 338
395 1 351
396 1 353
397 1 320
398 1 299
399 1 272
400 1 270
401 1 254
402 1 260
403 1 306
404 1 353
405 1 347
406 1 359
407 1 357
408 1 334
409 1 311
410 1 308
411 1 300
412 1 304
413 1 306
414 1 298
415 1 358
416 1 435
417 1 487
418 1 515
419 1 517
420 1 469
421 1 448
422 1 477
423 1 478
424 1 449
425 1 443
426 1 434
427 1 431
428 1 429
429 1 437
430 1 464
431 1 529
432 1 599
433 1 619
434 1 419
435 1 378
436 1 390
437 1 309
438 1 295
439 1 302
440 1 302
441 1 312
442 1 339
443 1 354
444 1 338
445 1 331
446 1 333
447 1 340
448 1 344
449 1 346
450 1 332
451 1 309
452 1 298
453 1 315
454 1 365
455 1 386
456 1 422
457 1 470
458 1 504
459 1 469
460 1 475
461 1 495
462 1 474
463 1 437
464 1 461
465 1 460
466 1 455
467 1 433
468 1 427
469 1 468
470 1 523
471 1 566
472 1 562
473 1 543
474 1 319
475 1 328
476 1 345
477 1 361
478 1 367
479 1 347
480 1 330
481 1 348
482 1 370
483 1 379
484 1 374
485 1 363
486 1 345
487 1 318
488 1 302
489 1 316
490 1 351
491 1 360
492 1 369
493 1 395
494 1 436
495 1 457
496 1 487
497 1 497
498 1 468
499 1 430
500 1 443
501 1 476
502 1 499
503 1 474
504 1 444
505 1 460
506 1 516
507 1 574
508 1 594
509 1 618
510 1 655
511 1 408
512 1 408
513 1 381
514 1 387
515 1 408
516 1 413
517 1 396
518 1 376
519 1 362
520 1 353
521 1 334
522 1 314
523 1 311
524 1 340
525 1 361
526 1 383
527 1 418
528 1 468
529 1 514
530 1 518
531 1 523
532 1 494
533 1 443
534 1 414
535 1 443
536 1 471
537 1 460
538 1 435
539 1 433
540 1 478
541 1 513
542 1 548
543 1 590
544 1 620
545 1 583
546 1 423
547 1 449
548 1 441
549 1 458
550 1 455
551 1 438
552 1 415
553 1 393
554 1 386
555 1 382
556 1 371
557 1 349
558 1 325
559 1 347
560 1 373
561 1 406
562 1 442
563 1 485
564 1 548
565 1 549
566 1 533
567 1 507
568 1 480
569 1 460
570 1 428
571 1 426
572 1 406
573 1 388
574 1 409
575 1 456
576 1 458
577 1 493
578 1 521
579 1 516
580 1 503
581 1 621
582 1 433
583 1 471
584 1 454
585 1 454
586 1 457
587 1 454
588 1 442
589 1 428
590 1 426
591 1 415
592 1 401
593 1 379
594 1 351
595 1 361
596 1 387
597 1 421
598 1 443
599 1 455
600 1 500
601 1 542
602 1 532
603 1 506
604 1 484
605 1 469
606 1 441
607 1 443
608 1 403
609 1 372
610 1 408
611 1 436
612 1 441
613 1 469
614 1 490
615 1 491
616 1 501
617 1 545
618 1 544
619 1 512
620 1 485
621 1 470
622 1 478
623 1 476
624 1 453
625 1 451
626 1 452
627 1 448
628 1 442
629 1 438
630 1 423
631 1 410
632 1 393
633 1 371
634 1 368
635 1 400
636 1 424
637 1 433
638 1 443
639 1 495
640 1 526
641 1 534
642 1 529
643 1 508
644 1 463
645 1 432
646 1 428
647 1 404
648 1 393
649 1 425
650 1 399
651 1 422
652 1 432
653 1 430
654 1 423
655 1 419
656 1 432
657 1 449
658 1 506
659 1 576
660 1 603
661 1 709
662 1 487
663 1 472
664 1 483
665 1 473
666 1 461
667 1 451
668 1 441
669 1 429
670 1 449
671 1 447
672 1 428
673 1 406
674 1 396
675 1 404
676 1 424
677 1 430
678 1 433
679 1 449
680 1 494
681 1 518
682 1 523
683 1 518
684 1 509
685 1 496
686 1 437
687 1 404
688 1 389
689 1 407
690 1 456
691 1 437
692 1 471
693 1 467
694 1 459
695 1 460
696 1 430
697 1 456
698 1 468
699 1 512
700 1 594
701 1 696
702 1 821
703 1 908
704 1 476
705 1 473
706 1 467
707 1 471
708 1 469
709 1 459
710 1 453
711 1 445
712 1 452
713 1 438
714 1 432
715 1 470
716 1 492
717 1 482
718 1 475
719 1 479
720 1 490
721 1 488
722 1 491
723 1 504
724 1 511
725 1 507
726 1 490
727 1 452
728 1 425
729 1 389
730 1 387
731 1 448
732 1 476
733 1 527
734 1 546
735 1 569
736 1 581
737 1 483
738 1 529
739 1 561
740 1 556
741 1 553
742 1 630
743 1 813
744 1 920
745 1 880
746 1 885
747 1 473
748 1 475
749 1 474
750 1 462
751 1 461
752 1 513
753 1 520
754 1 469
755 1 451
756 1 488
757 1 560
758 1 560
759 1 534
760 1 510
761 1 492
762 1 480
763 1 472
764 1 465
765 1 476
766 1 503
767 1 520
768 1 492
769 1 458
770 1 422
771 1 383
772 1 362
773 1 374
774 1 406
775 1 423
776 1 470
777 1 536
778 1 560
779 1 432
780 1 503
781 1 664
782 1 703
783 1 618
784 1 560
785 1 627
786 1 698
787 1 690
788 1 748
789 1 976
790 1 460
791 1 439
792 1 443
793 1 499
794 1 563
795 1 511
796 1 489
797 1 515
798 1 552
799 1 549
800 1 528
801 1 502
802 1 483
803 1 483
804 1 508
805 1 489
806 1 466
807 1 470
808 1 489
809 1 479
810 1 444
811 1 407
812 1 390
813 1 374
814 1 341
815 1 334
816 1 329
817 1 340
818 1 361
819 1 375
820 1 356
821 1 386
822 1 508
823 1 639
824 1 701
825 1 649
826 1 683
827 1 641
828 1 651
829 1 732
830 1 860
831 1 996
832 1 1101
833 1 438
834 1 417
835 1 421
836 1 462
837 1 521
838 1 521
839 1 518
840 1 516
841 1 505
842 1 504
843 1 487
844 1 466
845 1 461
846 1 475
847 1 485
848 1 464
849 1 436
850 1 416
851 1 409
852 1 413
853 1 397
854 1 397
855 1 399
856 1 394
857 1 376
858 1 358
859 1 349
860 1 341
861 1 332
862 1 324
863 1 325
864 1 331
865 1 346
866 1 388
867 1 473
868 1 604
869 1 679
870 1 662
871 1 675
872 1 691
873 1 674
874 1 723
875 1 824
876 1 861
877 1 900
878 1 479
879 1 446
880 1 443
881 1 465
882 1 505
883 1 510
884 1 507
885 1 497
886 1 476
887 1 471
888 1 440
889 1 420
890 1 412
891 1 412
892 1 409
893 1 404
894 1 390
895 1 377
896 1 374
897 1 390
898 1 404
899 1 412
900 1 417
901 1 415
902 1 405
903 1 390
904 1 387
905 1 384
906 1 377
907 1 364
908 1 353
909 1 333
910 1 324
911 1 318
912 1 332
913 1 390
914 1 424
915 1 499
916 1 589
917 1 608
918 1 529
919 1 572
920 1 604
921 1 669
922 1 783
923 1 896
924 1 878
925 1 531
926 1 499
927 1 482
928 1 460
929 1 460
930 1 458
931 1 445
932 1 432
933 1 433
934 1 436
935 1 401
936 1 382
937 1 374
938 1 368
939 1 364
940 1 367
941 1 374
942 1 393
943 1 413
944 1 413
945 1 442
946 1 443
947 1 448
948 1 449
949 1 436
950 1 428
951 1 436
952 1 426
953 1 408
954 1 391
955 1 367
956 1 343
957 1 336
958 1 333
959 1 327
960 1 317
961 1 317
962 1 382
963 1 430
964 1 459
965 1 482
966 1 461
967 1 473
968 1 551
969 1 655
970 1 741
971 1 779
972 1 898
973 1 491
974 1 475
975 1 451
976 1 425
977 1 414
978 1 411
979 1 412
980 1 421
981 1 434
982 1 405
983 1 386
984 1 384
985 1 386
986 1 385
987 1 387
988 1 389
989 1 411
990 1 435
991 1 451
992 1 455
993 1 470
994 1 468
995 1 467
996 1 463
997 1 448
998 1 431
999 1 424
1000 1 411
1001 1 397
1002 1 388
1003 1 378
1004 1 375
1005 1 375
1006 1 369
1007 1 356
1008 1 338
1009 1 326
1010 1 368
1011 1 392
1012 1 404
1013 1 420
1014 1 419
1015 1 430
1016 1 506
1017 1 618
1018 1 713
1019 1 725
1020 1 463
1021 1 444
1022 1 434
1023 1 426
1024 1 421
1025 1 424
1026 1 441
1027 1 429
1028 1 440
1029 1 462
1030 1 460
1031 1 409
1032 1 408
1033 1 415
1034 1 423
1035 1 432
1036 1 438
1037 1 435
1038 1 456
1039 1 469
1040 1 471
1041 1 482
1042 1 484
1043 1 473
1044 1 458
1045 1 441
1046 1 424
1047 1 426
1048 1 433
1049 1 431
1050 1 426
1051 1 424
1052 1 427
1053 1 422
1054 1 413
1055 1 402
1056 1 389
1057 1 368
1058 1 354
1059 1 365
1060 1 380
1061 1 392
1062 1 395
1063 1 383
1064 1 403
1065 1 437
1066 1 514
1067 1 623
1068 1 692
1069 1 444
1070 1 446
1071 1 445
1072 1 445
1073 1 451
1074 1 466
1075 1 473
1076 1 449
1077 1 459
1078 1 482
1079 1 474
1080 1 441
1081 1 446
1082 1 456
1083 1 468
1084 1 478
1085 1 462
1086 1 474
1087 1 483
1088 1 485
1089 1 482
1090 1 477
1091 1 463
1092 1 447
1093 1 437
1094 1 438
1095 1 452
1096 1 472
1097 1 472
1098 1 468
1099 1 463
1100 1 459
1101 1 456
1102 1 445
1103 1 437
1104 1 430
1105 1 423
1106 1 410
1107 1 396
1108 1 401
1109 1 401
1110 1 395
1111 1 391
1112 1 377
1113 1 579
1114 1 464
1115 1 466
1116 1 469
1117 1 473
1118 1 489
1119 1 492
1120 1 488
1121 1 505
1122 1 495
1123 1 463
1124 1 467
1125 1 488
1126 1 489
1127 1 473
1128 1 485
1129 1 497
1130 1 501
1131 1 494
1132 1 476
1133 1 483
1134 1 480
1135 1 474
1136 1 466
1137 1 451
1138 1 426
1139 1 441
1140 1 463
1141 1 479
1142 1 485
1143 1 482
1144 1 473
1145 1 474
1146 1 474
1147 1 469
1148 1 465
1149 1 453
1150 1 446
1151 1 440
1152 1 432
1153 1 424
1154 1 416
1155 1 411
1156 1 398
1157 1 373
1158 1 342
1159 1 339
1160 1 485
1161 1 483
1162 1 488
1163 1 495
1164 1 501
1165 1 490
1166 1 508
1167 1 506
1168 1 488
1169 1 503
1170 1 506
1171 1 485
1172 1 481
1173 1 492
1174 1 500
1175 1 500
1176 1 509
1177 1 508
1178 1 498
1179 1 487
1180 1 486
1181 1 474
1182 1 470
1183 1 462
1184 1 448
1185 1 438
1186 1 428
1187 1 463
1188 1 490
1189 1 493
1190 1 478
1191 1 473
1192 1 483
1193 1 482
1194 1 475
1195 1 468
1196 1 465
1197 1 451
1198 1 452
1199 1 451
1200 1 448
1201 1 451
1202 1 465
1203 1 422
1204 1 379
1205 1 342
1206 1 315
1207 1 332
1208 1 505
1209 1 508
1210 1 514
1211 1 517
1212 1 515
1213 1 514
1214 1 521
1215 1 517
1216 1 507
1217 1 520
1218 1 529
1219 1 512
1220 1 502
1221 1 507
1222 1 520
1223 1 515
1224 1 511
1225 1 506
1226 1 500
1227 1 492
1228 1 480
1229 1 475
1230 1 470
1231 1 464
1232 1 459
1233 1 461
1234 1 461
1235 1 479
1236 1 487
1237 1 482
1238 1 470
1239 1 462
1240 1 466
1241 1 459
1242 1 448
1243 1 442
1244 1 449
1245 1 449
1246 1 452
1247 1 454
1248 1 458
1249 1 466
1250 1 447
1251 1 401
1252 1 361
1253 1 345
1254 1 528
1255 1 539
1256 1 544
1257 1 543
1258 1 541
1259 1 540
1260 1 548
1261 1 560
1262 1 567
1263 1 544
1264 1 531
1265 1 527
1266 1 532
1267 1 543
1268 1 532
1269 1 525
1270 1 515
1271 1 505
1272 1 496
1273 1 486
1274 1 488
1275 1 486
1276 1 484
1277 1 486
1278 1 495
1279 1 497
1280 1 510
1281 1 518
1282 1 517
1283 1 510
1284 1 493
1285 1 460
1286 1 434
1287 1 419
1288 1 413
1289 1 415
1290 1 420
1291 1 415
1292 1 406
1293 1 400
1294 1 400
1295 1 386
1296 1 554
1297 1 561
1298 1 567
1299 1 584
1300 1 556
1301 1 562
1302 1 582
1303 1 590
1304 1 570
1305 1 559
1306 1 558
1307 1 560
1308 1 566
1309 1 574
1310 1 560
1311 1 553
1312 1 540
1313 1 526
1314 1 517
1315 1 515
1316 1 513
1317 1 512
1318 1 513
1319 1 516
1320 1 521
1321 1 525
1322 1 552
1323 1 564
1324 1 556
1325 1 533
1326 1 509
1327 1 480
1328 1 465
1329 1 457
1330 1 449
1331 1 449
1332 1 443
1333 1 433
1334 1 422
1335 1 419
1336 1 580
1337 1 600
1338 1 620
1339 1 588
1340 1 592
1341 1 603
1342 1 601
1343 1 584
1344 1 591
1345 1 593
1346 1 599
1347 1 603
1348 1 592
1349 1 563
1350 1 577
1351 1 581
1352 1 575
1353 1 565
1354 1 560
1355 1 548
1356 1 544
1357 1 546
1358 1 551
1359 1 557
1360 1 562
1361 1 560
1362 1 539
1363 1 510
1364 1 490
1365 1 494
1366 1 537
1367 1 536
1368 1 513
1369 1 495
1370 1 500
1371 1 480
1372 1 603
1373 1 624
1374 1 626
1375 1 629
1376 1 632
1377 1 628
1378 1 619
1379 1 619
1380 1 624
1381 1 625
1382 1 639
1383 1 640
1384 1 600
1385 1 556
1386 1 613
1387 1 632
1388 1 627
1389 1 622
1390 1 612
1391 1 601
1392 1 587
1393 1 583
1394 1 590
1395 1 596
1396 1 559
1397 1 533
1398 1 501
1399 1 473
1400 1 467
1401 1 506
1402 1 570
1403 1 567
1404 1 538
1405 1 525
1406 1 539
1407 1 499
1408 1 438
1409 1 624
1410 1 637
1411 1 663
1412 1 680
1413 1 701
1414 1 701
1415 1 683
1416 1 663
1417 1 667
1418 1 678
1419 1 672
1420 1 680
1421 1 676
1422 1 629
1423 1 564
1424 1 659
1425 1 653
1426 1 628
1427 1 645
1428 1 633
1429 1 666
1430 1 653
1431 1 636
1432 1 625
1433 1 602
1434 1 541
1435 1 516
1436 1 491
1437 1 470
1438 1 475
1439 1 528
1440 1 561
1441 1 550
1442 1 537
1443 1 548
1444 1 575
1445 1 531
1446 1 465
1447 1 428
1448 1 681
1449 1 715
1450 1 770
1451 1 785
1452 1 778
1453 1 746
1454 1 715
1455 1 730
1456 1 761
1457 1 727
1458 1 713
1459 1 701
1460 1 646
1461 1 561
1462 1 638
1463 1 631
1464 1 614
1465 1 636
1466 1 618
1467 1 694
1468 1 705
1469 1 690
1470 1 663
1471 1 615
1472 1 552
1473 1 500
1474 1 470
1475 1 466
1476 1 487
1477 1 538
1478 1 533
1479 1 520
1480 1 518
1481 1 545
1482 1 610
1483 1 609
1484 1 553
1485 1 490
1486 1 451
1487 1 742
1488 1 722
1489 1 774
1490 1 817
1491 1 805
1492 1 765
1493 1 741
1494 1 783
1495 1 811
1496 1 758
1497 1 737
1498 1 726
1499 1 669
1500 1 587
1501 1 636
1502 1 633
1503 1 615
1504 1 621
1505 1 637
1506 1 689
1507 1 729
1508 1 746
1509 1 736
1510 1 706
1511 1 659
1512 1 568
1513 1 489
1514 1 481
1515 1 573
1516 1 680
1517 1 688
1518 1 621
1519 1 618
1520 1 705
1521 1 701
1522 1 757
1523 1 780
1524 1 661
1525 1 480
1526 1 860
1527 1 872
1528 1 757
1529 1 719
1530 1 836
1531 1 827
1532 1 786
1533 1 774
1534 1 807
1535 1 802
1536 1 780
1537 1 777
1538 1 769
1539 1 719
1540 1 642
1541 1 666
1542 1 642
1543 1 619
1544 1 672
1545 1 870
1546 1 748
1547 1 855
1548 1 891
1549 1 849
1550 1 931
1551 1 872
1552 1 905
1553 1 755
1554 1 633
1555 1 787
1556 1 998
1557 1 1007
1558 1 845
1559 1 852
1560 1 1050
1561 1 916
1562 1 971
1563 1 946
1564 1 816
1565 1 708
1566 1 905
1567 1 907
1568 1 788
1569 1 768
1570 1 893
1571 1 891
1572 1 845
1573 1 816
1574 1 822
1575 1 771
1576 1 885
1577 1 937
1578 1 913
1579 1 858
1580 1 703
1581 1 708
1582 1 737
1583 1 787
1584 1 888
1585 1 1104
1586 1 853
1587 1 1020
1588 1 1090
1589 1 1038
1590 1 1193
1591 1 1149
1592 1 1166
1593 1 1053
1594 1 843
1595 1 706
1596 1 902
1597 1 980
1598 1 1138
1599 1 1117
1600 1 1038
1601 1 1037
1602 1 1013
1603 1 970
1604 1 963
1605 1 593
1606 1 699
1607 1 719
1608 1 775
1609 1 875
1610 1 951
1611 1 911
1612 1 810
1613 1 996
1614 1 1046
1615 1 1054
1616 1 995
1617 1 898
1618 1 842
1619 1 1001
1620 1 1208
1621 1 1244
1622 1 1166
1623 1 1089
1624 1 880
1625 1 1024
1626 1 1012
1627 1 972
1628 1 1012
1629 1 1044
1630 1 1002
1631 1 1100
1632 1 1187
1633 1 1222
1634 1 1251
1635 1 1262
1636 1 1187
1637 1 1372
1638 1 1205
1639 1 963
1640 1 1372
1641 1 1070
1642 1 1168
1643 1 1070
1644 1 873
1645 1 1131
1646 1 1232
1647 1 1405
1648 1 1363
1649 1 1229
1650 1 1131
1651 1 1040
1652 1 1161
1653 1 1165
1654 1 1156
1655 1 1205
1656 1 1208
1657 1 1249
1658 1 1687
1659 1 1470
1660 1 1755
1661 1 1202
1662 1 1307
1663 1 1190
1664 1 965
1665 1 1360
1666 1 1447
1667 1 1428
1668 1 1437
1669 1 1348
1670 1 1169
1671 1 1292
1672 1 1530
1673 1 1659
1674 1 1388
1675 1 1264
1676 1 1202
1677 1 1640
1678 1 1694
1679 1 1647
46 / 54

Extraction

de_elevation |>
extract(bavaria) |>
summarise(across(elev, lst(min, max, mean)))
elev_min elev_max elev_mean
1 145 1755 517.601
46 / 54

Extraction

(de_nuts1 <- de_nuts3 |>
group_by(nuts = str_sub(nuts, 1, 3)) |>
summarise(geometry = st_union(geometry)))
Simple feature collection with 16 features and 1 field
Geometry type: GEOMETRY
Dimension: XY
Bounding box: xmin: 5.877085 ymin: 47.27011 xmax: 15.02282 ymax: 54.98211
Geodetic CRS: WGS 84
# A tibble: 16 × 2
nuts geometry
<chr> <GEOMETRY [°]>
1 DE1 POLYGON ((9.182192 47.65589, 9.364413 47.62806, 9.495604 47.55145, 9.5…
2 DE2 POLYGON ((10.7292 50.23001, 10.61011 50.22799, 10.58959 50.31986, 10.4…
3 DE3 POLYGON ((13.39854 52.64819, 13.16426 52.5989, 13.13901 52.50206, 13.1…
4 DE4 POLYGON ((12.98468 53.16499, 12.92016 53.19372, 12.8793 53.18263, 12.8…
5 DE5 MULTIPOLYGON (((8.585106 53.20144, 8.48533 53.22712, 8.654899 53.10886…
6 DE6 MULTIPOLYGON (((10.30795 53.4332, 10.23668 53.49635, 10.17859 53.53497…
7 DE7 POLYGON ((8.99056 50.06712, 9.165176 50.10605, 9.270941 50.14205, 9.40…
8 DE8 POLYGON ((12.33175 53.31801, 12.74191 53.20144, 12.77713 53.18877, 12.…
9 DE9 MULTIPOLYGON (((6.930503 53.68451, 6.848968 53.69901, 6.809192 53.6793…
10 DEA POLYGON ((7.785898 50.93991, 7.851496 50.92583, 8.03969 50.69738, 8.12…
11 DEB POLYGON ((8.414774 49.59505, 8.37993 49.68695, 8.446378 49.7308, 8.448…
12 DEC POLYGON ((6.556986 49.41921, 6.723466 49.21883, 6.784494 49.16084, 6.9…
13 DED POLYGON ((13.65217 50.73036, 13.82971 50.73285, 14.36331 50.90343, 14.…
14 DEE POLYGON ((11.00878 52.49675, 10.93454 52.47179, 11.05106 52.37008, 11.…
15 DEF MULTIPOLYGON (((7.940571 54.20555, 7.888383 54.23613, 7.800922 54.2111…
16 DEG POLYGON ((10.38003 51.57562, 10.26577 51.48461, 9.928339 51.3753, 9.98…
47 / 54

Extraction

de_nuts1 |>
print(width = 44)
Simple feature collection with 16 features and 1 field
Geometry type: GEOMETRY
Dimension: XY
Bounding box: xmin: 5.877085 ymin: 47.27011 xmax: 15.02282 ymax: 54.98211
Geodetic CRS: WGS 84
# A tibble: 16 × 2
nuts geometry
<chr> <GEOMETRY [°]>
1 DE1 POLYGON ((9.182192 47.65589, 9.364…
2 DE2 POLYGON ((10.7292 50.23001, 10.610…
3 DE3 POLYGON ((13.39854 52.64819, 13.16…
4 DE4 POLYGON ((12.98468 53.16499, 12.92…
5 DE5 MULTIPOLYGON (((8.585106 53.20144,…
6 DE6 MULTIPOLYGON (((10.30795 53.4332, …
7 DE7 POLYGON ((8.99056 50.06712, 9.1651…
8 DE8 POLYGON ((12.33175 53.31801, 12.74…
9 DE9 MULTIPOLYGON (((6.930503 53.68451,…
10 DEA POLYGON ((7.785898 50.93991, 7.851…
11 DEB POLYGON ((8.414774 49.59505, 8.379…
12 DEC POLYGON ((6.556986 49.41921, 6.723…
13 DED POLYGON ((13.65217 50.73036, 13.82…
14 DEE POLYGON ((11.00878 52.49675, 10.93…
15 DEF MULTIPOLYGON (((7.940571 54.20555,…
16 DEG POLYGON ((10.38003 51.57562, 10.26…
47 / 54

Extraction

de_nuts1 |>
bind_cols(
extract(de_elevation, de_nuts1) |>
nest(elev_rast = -ID) |>
select(-ID)
) |>
print(width = 44)
Simple feature collection with 16 features and 2 fields
Geometry type: GEOMETRY
Dimension: XY
Bounding box: xmin: 5.877085 ymin: 47.27011 xmax: 15.02282 ymax: 54.98211
Geodetic CRS: WGS 84
# A tibble: 16 × 3
nuts geometry elev_rast
* <chr> <GEOMETRY [°]> <list>
1 DE1 POLYGON ((9.182192 47.65… <tibble>
2 DE2 POLYGON ((10.7292 50.230… <tibble>
3 DE3 POLYGON ((13.39854 52.64… <tibble>
4 DE4 POLYGON ((12.98468 53.16… <tibble>
5 DE5 MULTIPOLYGON (((8.585106… <tibble>
6 DE6 MULTIPOLYGON (((10.30795… <tibble>
7 DE7 POLYGON ((8.99056 50.067… <tibble>
8 DE8 POLYGON ((12.33175 53.31… <tibble>
9 DE9 MULTIPOLYGON (((6.930503… <tibble>
10 DEA POLYGON ((7.785898 50.93… <tibble>
11 DEB POLYGON ((8.414774 49.59… <tibble>
12 DEC POLYGON ((6.556986 49.41… <tibble>
13 DED POLYGON ((13.65217 50.73… <tibble>
14 DEE POLYGON ((11.00878 52.49… <tibble>
15 DEF MULTIPOLYGON (((7.940571… <tibble>
16 DEG POLYGON ((10.38003 51.57… <tibble>
47 / 54

Extraction

de_nuts1 |>
bind_cols(
extract(de_elevation, de_nuts1) |>
nest(elev_rast = -ID) |>
select(-ID)
) |>
st_drop_geometry() |>
print(width = 44)
# A tibble: 16 × 2
nuts elev_rast
* <chr> <list>
1 DE1 <tibble [866 × 1]>
2 DE2 <tibble [1,679 × 1]>
3 DE3 <tibble [24 × 1]>
4 DE4 <tibble [765 × 1]>
5 DE5 <tibble [10 × 1]>
6 DE6 <tibble [19 × 1]>
7 DE7 <tibble [524 × 1]>
8 DE8 <tibble [617 × 1]>
9 DE9 <tibble [1,253 × 1]>
10 DEA <tibble [867 × 1]>
11 DEB <tibble [485 × 1]>
12 DEC <tibble [61 × 1]>
13 DED <tibble [464 × 1]>
14 DEE <tibble [529 × 1]>
15 DEF <tibble [415 × 1]>
16 DEG <tibble [404 × 1]>
47 / 54

Extraction

de_nuts1 |>
bind_cols(
extract(de_elevation, de_nuts1) |>
nest(elev_rast = -ID) |>
select(-ID)
) |>
st_drop_geometry() |>
mutate(elev_sum = map(elev_rast, \(x) {
summarise(x, across(elev, lst(min, max, mean)))
})) |>
print(width = 44)
# A tibble: 16 × 3
nuts elev_rast elev_sum
<chr> <list> <list>
1 DE1 <tibble [866 × 1]> <tibble>
2 DE2 <tibble [1,679 × 1]> <tibble>
3 DE3 <tibble [24 × 1]> <tibble>
4 DE4 <tibble [765 × 1]> <tibble>
5 DE5 <tibble [10 × 1]> <tibble>
6 DE6 <tibble [19 × 1]> <tibble>
7 DE7 <tibble [524 × 1]> <tibble>
8 DE8 <tibble [617 × 1]> <tibble>
9 DE9 <tibble [1,253 × 1]> <tibble>
10 DEA <tibble [867 × 1]> <tibble>
11 DEB <tibble [485 × 1]> <tibble>
12 DEC <tibble [61 × 1]> <tibble>
13 DED <tibble [464 × 1]> <tibble>
14 DEE <tibble [529 × 1]> <tibble>
15 DEF <tibble [415 × 1]> <tibble>
16 DEG <tibble [404 × 1]> <tibble>
47 / 54

Extraction

de_nuts1 |>
bind_cols(
extract(de_elevation, de_nuts1) |>
nest(elev_rast = -ID) |>
select(-ID)
) |>
st_drop_geometry() |>
mutate(elev_sum = map(elev_rast, \(x) {
summarise(x, across(elev, lst(min, max, mean)))
})) |>
select(-elev_rast) |>
print(width = 44)
# A tibble: 16 × 2
nuts elev_sum
<chr> <list>
1 DE1 <tibble [1 × 3]>
2 DE2 <tibble [1 × 3]>
3 DE3 <tibble [1 × 3]>
4 DE4 <tibble [1 × 3]>
5 DE5 <tibble [1 × 3]>
6 DE6 <tibble [1 × 3]>
7 DE7 <tibble [1 × 3]>
8 DE8 <tibble [1 × 3]>
9 DE9 <tibble [1 × 3]>
10 DEA <tibble [1 × 3]>
11 DEB <tibble [1 × 3]>
12 DEC <tibble [1 × 3]>
13 DED <tibble [1 × 3]>
14 DEE <tibble [1 × 3]>
15 DEF <tibble [1 × 3]>
16 DEG <tibble [1 × 3]>
47 / 54

Extraction

de_nuts1 |>
bind_cols(
extract(de_elevation, de_nuts1) |>
nest(elev_rast = -ID) |>
select(-ID)
) |>
st_drop_geometry() |>
mutate(elev_sum = map(elev_rast, \(x) {
summarise(x, across(elev, lst(min, max, mean)))
})) |>
select(-elev_rast) |>
unnest_wider(elev_sum) |>
print(width = 44)
# A tibble: 16 × 4
nuts elev_min elev_max elev_mean
<chr> <int> <int> <dbl>
1 DE1 90 1074 498.
2 DE2 145 1755 518.
3 DE3 39 51 43.7
4 DE4 1 156 63.8
5 DE5 -1 17 4.8
6 DE6 -5 48 15.3
7 DE7 83 737 302.
8 DE8 -4 116 38.5
9 DE9 -8 714 71.7
10 DEA 14 679 179.
11 DEB 84 590 321.
12 DEC 212 486 313.
13 DED 81 891 305.
14 DEE 19 580 116.
15 DEF -21 78 19.9
16 DEG 148 740 367.
47 / 54

Extraction

de_nuts1 |>
bind_cols(
extract(de_elevation, de_nuts1) |>
nest(elev_rast = -ID) |>
select(-ID)
) |>
st_drop_geometry() |>
mutate(elev_sum = map(elev_rast, \(x) {
summarise(x, across(elev, lst(min, max, mean)))
})) |>
select(-elev_rast) |>
unnest_wider(elev_sum) |>
arrange(desc(elev_mean)) |>
print(width = 44)
# A tibble: 16 × 4
nuts elev_min elev_max elev_mean
<chr> <int> <int> <dbl>
1 DE2 145 1755 518.
2 DE1 90 1074 498.
3 DEG 148 740 367.
4 DEB 84 590 321.
5 DEC 212 486 313.
6 DED 81 891 305.
7 DE7 83 737 302.
8 DEA 14 679 179.
9 DEE 19 580 116.
10 DE9 -8 714 71.7
11 DE4 1 156 63.8
12 DE3 39 51 43.7
13 DE8 -4 116 38.5
14 DEF -21 78 19.9
15 DE6 -5 48 15.3
16 DE5 -1 17 4.8
47 / 54

References

48 / 54

Appendix: Data Preparation

50 / 54

GeoJSON of US states in AlbersUSA projection

library(sf)
library(tidyverse)
us_states_albers <- read_rds(
"https://github.com/hrbrmstr/albersusa/raw/master/inst/extdata/states_sf.rda"
) |>
select(fips_state, name) |>
st_transform("EPSG:2163") |>
rmapshaper::ms_simplify()
write_sf(us_states_albers, "slides/data/us-states-albers.geojson")
51 / 54

US 2020 presidential election results

us_pop <- httr::GET(
"https://api.census.gov/data/2018/pep/population?get=POP&for=state:*"
) |>
httr::content() |>
tail(-1) |>
map(set_names, "pop18", "fips_state") |>
bind_rows() |>
mutate(pop18 = as.numeric(pop18))
us_votes <- read_csv(
"https://github.com/walkerke/census-with-r-book/raw/master/data/us_vote_2020.csv"
) |>
select(state, called) |>
left_join(x = st_drop_geometry(us_states_albers), by = join_by(name == state)) |>
left_join(us_pop, by = join_by(fips_state))
write_rds(us_votes, "slides/data/us_votes.rds")
52 / 54

GeoJSON of German districts (NUTS-3)

giscoR::gisco_get_nuts(epsg = "3035", country = "DE", nuts_level = 3) |>
select(nuts = NUTS_ID, name = NAME_LATN) |>
write_sf("slides/data/de-nuts3.geojson")
53 / 54

Germany DEM raster

IsoriX::ElevRasterDE |>
rast() |>
`names<-`("elev") |>
writeRaster("slides/data/de_elevation.tif", datatype = "INT2S")
54 / 54
2 / 54
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow