Systematic, fundamental overview of spatial data manipulation techniques
Focus on operations on vector data geometries, implemented by the {sf} package
Systematic, fundamental overview of spatial data manipulation techniques
Focus on operations on vector data geometries, implemented by the {sf} package
Predicates (return boolean) |
Measures (return number) |
Transformers (return geometry) |
|
---|---|---|---|
Unary | x | x | |
Binary | x | x | x |
N-ary | x |
Systematic, fundamental overview of spatial data manipulation techniques
Focus on operations on vector data geometries, implemented by the {sf} package
Predicates (return boolean) |
Measures (return number) |
Transformers (return geometry) |
|
---|---|---|---|
Unary | x | x | |
Binary | x | x | x |
N-ary | x |
Systematic, fundamental overview of spatial data manipulation techniques
Focus on operations on vector data geometries, implemented by the {sf} package
Predicates (return boolean) |
Measures (return number) |
Transformers (return geometry) |
|
---|---|---|---|
Unary | x | x | |
Binary | x | x | x |
N-ary | x |
Raster data operations to complement vector data attributes
Leans heavily on the philosophy of {dplyr} and {ggplot2}
Different spatial data file formats
Different spatial data file formats
Modelling and inferential analysis
Different spatial data file formats
Modelling and inferential analysis
How to make (beautiful) maps
Data import/export
Import: sf::read_sf()
for vector data, terra::rast()
for raster data
Export: sf::write_sf()
, terra::writeRaster()
Data import/export
Import: sf::read_sf()
for vector data, terra::rast()
for raster data
Export: sf::write_sf()
, terra::writeRaster()
Coordinate reference systems (CRSs)
Important!
But default just works most of the time (esp. since {sf} 1.0.0)
Further reading: Chapter 7 of Geocomputation with R
library(sf)library(tidyverse)us_states <- read_sf("https://lo-ng.netlify.app/slides/data/us-states-albers.geojson")us_states
Simple feature collection with 51 features and 2 fieldsGeometry type: MULTIPOLYGONDimension: XYBounding box: xmin: -2036903 ymin: -2465746 xmax: 2521918 ymax: 731860.1Projected CRS: NAD27 / US National Atlas Equal Area# A tibble: 51 × 3 fips_state name geometry <chr> <chr> <MULTIPOLYGON [m]> 1 04 Arizona (((-805018.1 -844577, -820986 -1004768, -847… 2 05 Arkansas (((558984.4 -1308375, 555289.4 -1249633, 542… 3 06 California (((-1857115 -997259, -1840861 -998344.4, -18… 4 08 Colorado (((-340987 -435780.7, -241136.9 -439894.2, -… 5 09 Connecticut (((2279630 65808.41, 2301408 2913.019, 23000… 6 11 District of Columbia (((1955464 -402054, 1960244 -393610.9, 19740… 7 13 Georgia (((1426586 -978019.1, 1484709 -967004.7, 153… 8 17 Illinois (((998533.7 -204278.7, 998810.4 -225676.6, 1… 9 18 Indiana (((1305615 -535053.6, 1300530 -540420.3, 131…10 22 Louisiana (((558984.4 -1308375, 729349.1 -1295816, 828…# ℹ 41 more rows
library(sf)library(tidyverse)us_states <- read_sf("https://lo-ng.netlify.app/slides/data/us-states-albers.geojson")us_votes <- read_rds("https://lo-ng.netlify.app/slides/data/us_votes.rds")us_states |> left_join(us_votes) |> select(called, pop18)
Simple feature collection with 51 features and 2 fieldsGeometry type: MULTIPOLYGONDimension: XYBounding box: xmin: -2036903 ymin: -2465746 xmax: 2521918 ymax: 731860.1Projected CRS: NAD27 / US National Atlas Equal Area# A tibble: 51 × 3 called pop18 geometry <chr> <dbl> <MULTIPOLYGON [m]> 1 D 7171646 (((-805018.1 -844577, -820986 -1004768, -847281.8 -1277600, … 2 R 3013825 (((558984.4 -1308375, 555289.4 -1249633, 542141.8 -1246005, … 3 D 39557045 (((-1857115 -997259, -1840861 -998344.4, -1833809 -1009424, … 4 D 5695564 (((-340987 -435780.7, -241136.9 -439894.2, -172639.7 -441887… 5 D 3572665 (((2279630 65808.41, 2301408 2913.019, 2300040 -8879.752, 22… 6 D 702455 (((1955464 -402054, 1960244 -393610.9, 1974075 -401534.9, 19… 7 D 10519475 (((1426586 -978019.1, 1484709 -967004.7, 1534994 -955419.9, … 8 D 12741080 (((998533.7 -204278.7, 998810.4 -225676.6, 1014867 -248685, … 9 R 6691878 (((1305615 -535053.6, 1300530 -540420.3, 1313039 -560392.6, …10 R 4659978 (((558984.4 -1308375, 729349.1 -1295816, 828091.2 -1286761, …# ℹ 41 more rows
library(sf)library(tidyverse)us_states <- read_sf("https://lo-ng.netlify.app/slides/data/us-states-albers.geojson")us_votes <- read_rds("https://lo-ng.netlify.app/slides/data/us_votes.rds")us_states |> left_join(us_votes) |> select(called, pop18) |> ggplot(aes(fill = called)) + geom_sf(show.legend = FALSE) + scale_fill_manual(values = c("#25428f", "#c70000")) + coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) + theme_void()
library(sf)library(tidyverse)us_states <- read_sf("https://lo-ng.netlify.app/slides/data/us-states-albers.geojson")us_votes <- read_rds("https://lo-ng.netlify.app/slides/data/us_votes.rds")us_states |> left_join(us_votes) |> select(called, pop18) |> mutate( area = as.numeric(st_area(geometry)), scaled_area = pop18 / max(pop18) * area[which.max(pop18)], scale = sqrt(scaled_area / area), cent = st_centroid(geometry), geometry = (geometry - cent) * scale + cent ) |> ggplot(aes(fill = called)) + geom_sf(show.legend = FALSE) + scale_fill_manual(values = c("#25428f", "#c70000")) + coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) + theme_void()
Standard for representing spatial vector data
Simple Feature geometries:
POINT (2 2)
MULTIPOINT ((0 1), (2 2), (4 1), (2 3), (1 4))
LINESTRING (1 1, 5 5, 5 6, 4 6, 3 4, 2 3)
MULTILINESTRING ((1 1, 5 5, 5 6, 4 6, 3 4, 2 3), (3 0, 4 1, 2 1))
POLYGON ((2 1, 3 1, 5 2, 6 3, 5 3, 4 4, 3 4, 1 3, 2 1), (2 2, 3 3, 4 3, 4 2, 2 2))
MULTIPOLYGON (((2 1, 3 1, 5 2, 6 3, 5 3, 4 4, 3 4, 1 3, 2 1), (2 2, 3 3, 4 3, 4 2, 2 2)), ((3 5, 4 5, 5 6, 3 7, 2 6, 3 5)))
Standard for representing spatial vector data
Simple Feature geometries:
POINT (2 2)
MULTIPOINT ((0 1), (2 2), (4 1), (2 3), (1 4))
LINESTRING (1 1, 5 5, 5 6, 4 6, 3 4, 2 3)
MULTILINESTRING ((1 1, 5 5, 5 6, 4 6, 3 4, 2 3), (3 0, 4 1, 2 1))
POLYGON ((2 1, 3 1, 5 2, 6 3, 5 3, 4 4, 3 4, 1 3, 2 1), (2 2, 3 3, 4 3, 4 2, 2 2))
MULTIPOLYGON (((2 1, 3 1, 5 2, 6 3, 5 3, 4 4, 3 4, 1 3, 2 1), (2 2, 3 3, 4 3, 4 2, 2 2)), ((3 5, 4 5, 5 6, 3 7, 2 6, 3 5)))
Provides support for Simple Features in R
Represents Simple Features as records in a data frame:
us_states
Simple feature collection with 51 features and 2 fieldsGeometry type: MULTIPOLYGONDimension: XYBounding box: xmin: -2036903 ymin: -2465746 xmax: 2521918 ymax: 731860.1Projected CRS: NAD27 / US National Atlas Equal Area# A tibble: 51 × 3 fips_state name geometry <chr> <chr> <MULTIPOLYGON [m]>1 04 Arizona (((-805018.1 -844577, -8209…2 05 Arkansas (((558984.4 -1308375, 55528…3 06 California (((-1857115 -997259, -18408…4 08 Colorado (((-340987 -435780.7, -2411…# ℹ 47 more rows
sf
object: data frame with spatial geometries
Every row is a single Simple Feature consisting of attributes and geometry
geometry
: list column that contains geometries (class sfc
)
Implements operations on Simple Feature geometries
st_*()
functions that work on sf
and sfc
objects, following PostGIS convention
(de_nuts3 <- read_sf("https://lo-ng.netlify.app/slides/data/de-nuts3.geojson"))
Simple feature collection with 401 features and 2 fieldsGeometry type: MULTIPOLYGONDimension: XYBounding box: xmin: 4031952 ymin: 2684075 xmax: 4671180 ymax: 3543086Projected CRS: ETRS89-extended / LAEA Europe# A tibble: 401 × 3 nuts name geometry <chr> <chr> <MULTIPOLYGON [m]> 1 DE254 Nürnberg, Kreisfreie Stadt (((4395582 2936363, 4406401 2929710, 44059… 2 DE255 Schwabach, Kreisfreie Stadt (((4399488 2914611, 4399340 2912229, 43949… 3 DE256 Ansbach, Landkreis (((4384059 2916281, 4386305 2905631, 43820… 4 DE257 Erlangen-Höchstadt (((4387813 2962179, 4400140 2944483, 44135… 5 DE234 Amberg-Sulzbach (((4461918 2902744, 4434038 2924102, 44360… 6 DE235 Cham (((4552189 2900592, 4548518 2895155, 45230… 7 DE236 Neumarkt i. d. OPf. (((4461918 2902744, 4462116 2899857, 44516… 8 DE237 Neustadt a. d. Waldnaab (((4508712 2939911, 4474093 2939442, 44601… 9 DE238 Regensburg, Landkreis (((4502290 2882921, 4497804 2865770, 44780…10 DE239 Schwandorf (((4508712 2939911, 4511976 2937497, 45118…# ℹ 391 more rows
de_nuts3 |> filter(startsWith(name, "A"))
Simple feature collection with 19 features and 2 fieldsGeometry type: MULTIPOLYGONDimension: XYBounding box: xmin: 4091473 ymin: 2775241 xmax: 4539907 ymax: 3403586Projected CRS: ETRS89-extended / LAEA Europe# A tibble: 19 × 3 nuts name geometry * <chr> <chr> <MULTIPOLYGON [m]> 1 DE256 Ansbach, Landkreis (((4384059 2916281, 4386305 2905631, 4… 2 DE234 Amberg-Sulzbach (((4461918 2902744, 4434038 2924102, 4… 3 DE251 Ansbach, Kreisfreie Stadt (((4356772 2910520, 4363699 2914647, 4… 4 DE261 Aschaffenburg, Kreisfreie Stadt (((4266274 2980543, 4256895 2980211, 4… 5 DE264 Aschaffenburg, Landkreis (((4278414 2997441, 4279506 2974455, 4… 6 DE271 Augsburg, Kreisfreie Stadt (((4388654 2794282, 4381950 2800775, 4… 7 DE145 Alb-Donau-Kreis (((4338058 2821924, 4330908 2815722, 4… 8 DE214 Altötting (((4539907 2792493, 4525936 2781512, 4… 9 DE231 Amberg, Kreisfreie Stadt (((4449020 2927007, 4457142 2934255, 4…10 DEG0M Altenburger Land (((4504767 3099894, 4507488 3093634, 4…11 DEB12 Ahrweiler (((4132529 3043937, 4106413 3030730, 4…12 DEB13 Altenkirchen (Westerwald) (((4169961 3092710, 4182511 3066932, 4…13 DEB3B Alzey-Worms (((4205818 2966931, 4209134 2959072, 4…14 DEE04 Altmarkkreis Salzwedel (((4428877 3262216, 4420644 3255037, 4…15 DEE05 Anhalt-Bitterfeld (((4483990 3217678, 4477747 3209147, 4…16 DE275 Aichach-Friedberg (((4416814 2818744, 4418060 2816287, 4…17 DE276 Augsburg, Landkreis (((4389187 2830822, 4386413 2816502, 4…18 DE946 Ammerland (((4208210 3345003, 4201080 3344123, 4…19 DE947 Aurich (((4141718 3363568, 4136206 3369633, 4…
de_nuts3_pop <- de_nuts3 |> left_join( # Downloaded from inkar.de read_csv("https://lo-ng.netlify.app/slides/data/de_pop20.csv"), by = join_by(nuts == nuts) )
Simple feature collection with 401 features and 3 fieldsGeometry type: MULTIPOLYGONDimension: XYBounding box: xmin: 4031952 ymin: 2684075 xmax: 4671180 ymax: 3543086Projected CRS: ETRS89-extended / LAEA Europe# A tibble: 401 × 4 nuts name geometry pop20 <chr> <chr> <MULTIPOLYGON [m]> <dbl>1 DE254 Nürnbe… (((4395582 2936363, 4406… 5155432 DE255 Schwab… (((4399488 2914611, 4399… 410563 DE256 Ansbac… (((4384059 2916281, 4386… 1853164 DE257 Erlang… (((4387813 2962179, 4400… 1381055 DE234 Amberg… (((4461918 2902744, 4434… 1029986 DE235 Cham (((4552189 2900592, 4548… 128094# ℹ 395 more rows
de_nuts3_pop <- de_nuts3 |> left_join( # Downloaded from inkar.de read_csv("https://lo-ng.netlify.app/slides/data/de_pop20.csv"), by = join_by(nuts == nuts) )
Simple feature collection with 401 features and 3 fieldsGeometry type: MULTIPOLYGONDimension: XYBounding box: xmin: 4031952 ymin: 2684075 xmax: 4671180 ymax: 3543086Projected CRS: ETRS89-extended / LAEA Europe# A tibble: 401 × 4 nuts name geometry pop20 <chr> <chr> <MULTIPOLYGON [m]> <dbl>1 DE254 Nürnbe… (((4395582 2936363, 4406… 5155432 DE255 Schwab… (((4399488 2914611, 4399… 410563 DE256 Ansbac… (((4384059 2916281, 4386… 1853164 DE257 Erlang… (((4387813 2962179, 4400… 1381055 DE234 Amberg… (((4461918 2902744, 4434… 1029986 DE235 Cham (((4552189 2900592, 4548… 128094# ℹ 395 more rows
New since {dplyr} 1.1.0: by = join_by(...)
Old syntax: by = c("nuts" = "nuts")
Shortcut: by = join_by(nuts)
(old syntax: by = "nuts"
)
Allows for other types of joins than equality joins (==
)
de_nuts1_pop <- de_nuts3_pop |> mutate(nuts = str_sub(nuts, 1, 3)) |> group_by(nuts) |> summarise(pop = sum(pop20))
Simple feature collection with 16 features and 2 fieldsGeometry type: GEOMETRYDimension: XYBounding box: xmin: 4031952 ymin: 2684075 xmax: 4671180 ymax: 3543086Projected CRS: ETRS89-extended / LAEA Europe# A tibble: 16 × 3 nuts pop geometry <chr> <dbl> <GEOMETRY [m]>1 DE1 11103043 POLYGON ((4162515 2721450, 4148793 2716636, 4142867 2719236, 4…2 DE2 13140183 POLYGON ((4287757 2714352, 4297839 2721916, 4325984 2728191, 4…3 DE3 3664088 MULTIPOLYGON (((4565855 3276636, 4570054 3269038, 4574088 3265…4 DE4 2531071 POLYGON ((4556978 3153409, 4544296 3148678, 4541206 3166243, 4…# ℹ 12 more rows
de_nuts1_pop <- de_nuts3_pop |> mutate(nuts = str_sub(nuts, 1, 3)) |> group_by(nuts) |> summarise(pop = sum(pop20))
Simple feature collection with 16 features and 2 fieldsGeometry type: GEOMETRYDimension: XYBounding box: xmin: 4031952 ymin: 2684075 xmax: 4671180 ymax: 3543086Projected CRS: ETRS89-extended / LAEA Europe# A tibble: 16 × 3 nuts pop geometry <chr> <dbl> <GEOMETRY [m]>1 DE1 11103043 POLYGON ((4162515 2721450, 4148793 2716636, 4142867 2719236, 4…2 DE2 13140183 POLYGON ((4287757 2714352, 4297839 2721916, 4325984 2728191, 4…3 DE3 3664088 MULTIPOLYGON (((4565855 3276636, 4570054 3269038, 4574088 3265…4 DE4 2531071 POLYGON ((4556978 3153409, 4544296 3148678, 4541206 3166243, 4…# ℹ 12 more rows
Predicates | Measures | Transformers | |
---|---|---|---|
Unary | x | x | |
Binary | x | x | x |
N-ary | x |
st_length()
: length of a LINESTRING or MULTILINESTRING geometryst_length()
: length of a LINESTRING or MULTILINESTRING geometry
st_area()
: area of a geometry
us_states |> mutate(area = st_area(geometry))
Simple feature collection with 51 features and 3 fieldsGeometry type: MULTIPOLYGONDimension: XYBounding box: xmin: -2036903 ymin: -2465746 xmax: 2521918 ymax: 731860.1Projected CRS: NAD27 / US National Atlas Equal Area# A tibble: 51 × 4 fips_state name geometry area * <chr> <chr> <MULTIPOLYGON [m]> [m^2] 1 04 Arizona (((-805018.1 -844577, -8… 2.95e11 2 05 Arkansas (((558984.4 -1308375, 55… 1.37e11 3 06 California (((-1857115 -997259, -18… 4.09e11 4 08 Colorado (((-340987 -435780.7, -2… 2.70e11 5 09 Connecticut (((2279630 65808.41, 230… 1.30e10 6 11 District of… (((1955464 -402054, 1960… 2.06e 8 7 13 Georgia (((1426586 -978019.1, 14… 1.53e11 8 17 Illinois (((998533.7 -204278.7, 9… 1.46e11 9 18 Indiana (((1305615 -535053.6, 13… 9.36e1010 22 Louisiana (((558984.4 -1308375, 72… 1.22e11# ℹ 41 more rows
us_states |> ggplot() + geom_sf() + theme_void()
us_centroids <- us_states |> st_centroid()us_centroids |> ggplot() + geom_sf() + theme_void()
bremen <- de_nuts1_pop |> filter(nuts == "DE5")bremen |> ggplot() + geom_sf() + coord_sf( xlim = st_bbox(bremen)[c(1, 3)], ylim = st_bbox(bremen)[c(2, 4)] ) + theme_void()
bremen <- de_nuts1_pop |> filter(nuts == "DE5")bremen |> st_centroid() |> ggplot() + geom_sf() + coord_sf( xlim = st_bbox(bremen)[c(1, 3)], ylim = st_bbox(bremen)[c(2, 4)] ) + theme_void()
bremen <- de_nuts1_pop |> filter(nuts == "DE5")bremen |> st_point_on_surface() |> ggplot() + geom_sf() + coord_sf( xlim = st_bbox(bremen)[c(1, 3)], ylim = st_bbox(bremen)[c(2, 4)] ) + theme_void()
us_centroids |> ggplot() + geom_sf() + theme_void()
st_buffer(us_centroids, 50000) |> ggplot() + geom_sf() + theme_void()
st_buffer(us_centroids, 100000) |> ggplot() + geom_sf() + theme_void()
st_buffer(us_centroids, 200000) |> ggplot() + geom_sf() + theme_void()
Linear transformations that preserve lines and parallelism, but may change the orientation, scale, and position of objects
us_states |> # ggplot() + geom_sf() + coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) + theme_void()
Linear transformations that preserve lines and parallelism, but may change the orientation, scale, and position of objects
us_states |> mutate(geometry = geometry + c(-100000, 100000)) |> ggplot() + geom_sf() + coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) + theme_void()
Linear transformations that preserve lines and parallelism, but may change the orientation, scale, and position of objects
us_states |> mutate(geometry = geometry * 0.5) |> ggplot() + geom_sf() + coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) + theme_void()
Linear transformations that preserve lines and parallelism, but may change the orientation, scale, and position of objects
us_states |> mutate(geometry = geometry - us_centroids$geometry) |> ggplot() + geom_sf() + coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) + theme_void()
Linear transformations that preserve lines and parallelism, but may change the orientation, scale, and position of objects
us_states |> mutate(geometry = (geometry - us_centroids$geometry) * 0.5) |> ggplot() + geom_sf() + coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) + theme_void()
Linear transformations that preserve lines and parallelism, but may change the orientation, scale, and position of objects
us_states |> mutate(geometry = (geometry - us_centroids$geometry) * 0.5 + us_centroids$geometry) |> ggplot() + geom_sf() + coord_sf(xlim = st_bbox(us_states)[c(1, 3)], ylim = st_bbox(us_states)[c(2, 4)]) + theme_void()
us_states |> select(name) |> print(width = 48)
Simple feature collection with 51 features and 1 fieldGeometry type: MULTIPOLYGONDimension: XYBounding box: xmin: -2036903 ymin: -2465746 xmax: 2521918 ymax: 731860.1Projected CRS: NAD27 / US National Atlas Equal Area# A tibble: 51 × 2 name geometry <chr> <MULTIPOLYGON [m]> 1 Arizona (((-805018.1 -844577, -8… 2 Arkansas (((558984.4 -1308375, 55… 3 California (((-1857115 -997259, -18… 4 Colorado (((-340987 -435780.7, -2… 5 Connecticut (((2279630 65808.41, 230… 6 District of Columb… (((1955464 -402054, 1960… 7 Georgia (((1426586 -978019.1, 14… 8 Illinois (((998533.7 -204278.7, 9… 9 Indiana (((1305615 -535053.6, 13…10 Louisiana (((558984.4 -1308375, 72…# ℹ 41 more rows
us_states |> select(name) |> st_cast("MULTILINESTRING") |> print(width = 48)
Simple feature collection with 51 features and 1 fieldGeometry type: MULTILINESTRINGDimension: XYBounding box: xmin: -2036903 ymin: -2465746 xmax: 2521918 ymax: 731860.1Projected CRS: NAD27 / US National Atlas Equal Area# A tibble: 51 × 2 name geometry <chr> <MULTILINESTRING [m]> 1 Arizona ((-805018.1 -844577, -82… 2 Arkansas ((558984.4 -1308375, 555… 3 California ((-1857115 -997259, -184… 4 Colorado ((-340987 -435780.7, -24… 5 Connecticut ((2279630 65808.41, 2301… 6 District of Columb… ((1955464 -402054, 19602… 7 Georgia ((1426586 -978019.1, 148… 8 Illinois ((998533.7 -204278.7, 99… 9 Indiana ((1305615 -535053.6, 130…10 Louisiana ((558984.4 -1308375, 729…# ℹ 41 more rows
us_states |> select(name) |> st_cast("MULTILINESTRING") |> mutate( border_len = st_length(geometry) ) |> arrange(desc(border_len)) |> print(width = 48)
Simple feature collection with 51 features and 2 fieldsGeometry type: MULTILINESTRINGDimension: XYBounding box: xmin: -2036903 ymin: -2465746 xmax: 2521918 ymax: 731860.1Projected CRS: NAD27 / US National Atlas Equal Area# A tibble: 51 × 3 name geometry border_len <chr> <MULTILINESTRING [m]> [m] 1 Alaska ((-1516285 -2108476, -15… 6138253. 2 Texas ((513575.4 -1242958, 526… 4735889. 3 Califor… ((-1857115 -997259, -184… 3606845. 4 Michigan ((1115493 184361.4, 1124… 3499197. 5 Montana ((-875690.5 1111.16, -88… 2825510. 6 Florida ((1876927 -2050256, 1894… 2776267. 7 Idaho ((-875690.5 1111.16, -91… 2566386. 8 Minneso… ((708640.3 -128513.3, 58… 2534621. 9 New Mex… ((-621546.9 -1440456, -7… 2374297.10 Virginia ((2138105 -453486.6, 213… 2343343.# ℹ 41 more rows
st_*(x, y) → boolean
(Geocomputation with R, Chapter 4)
bavaria <- de_nuts1_pop |> filter(nuts == "DE2")st_join( de_nuts3, bavaria, join = st_intersects,) |> ggplot() + geom_sf() + geom_sf(data = bavaria, linewidth = 1, fill = NA) + coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) + theme_void()
Nothing happened 🤔
bavaria <- de_nuts1_pop |> filter(nuts == "DE2")st_join( de_nuts3, bavaria, join = st_intersects, left = FALSE # Performs inner join) |> ggplot() + geom_sf() + geom_sf(data = bavaria, linewidth = 1, fill = NA) + coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) + theme_void()
bavaria <- de_nuts1_pop |> filter(nuts == "DE2")st_join( de_nuts3, bavaria, join = st_within, left = FALSE # Performs inner join) |> ggplot() + geom_sf() + geom_sf(data = bavaria, linewidth = 1, fill = NA) + coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) + theme_void()
bavaria <- de_nuts1_pop |> filter(nuts == "DE2")st_join( de_nuts3, bavaria, join = st_touches, left = FALSE # Performs inner join) |> ggplot() + geom_sf() + geom_sf(data = bavaria, linewidth = 1, fill = NA) + coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) + theme_void()
bavaria <- de_nuts1_pop |> filter(nuts == "DE2")st_join( de_nuts3, bavaria, join = st_disjoint, left = FALSE # Performs inner join) |> ggplot() + geom_sf() + geom_sf(data = bavaria, linewidth = 1, fill = NA) + coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) + theme_void()
bavaria <- de_nuts1_pop |> filter(nuts == "DE2")st_join( de_nuts3, bavaria, join = st_is_within_distance, dist = 100000, left = FALSE # Performs inner join) |> ggplot() + geom_sf() + geom_sf(data = bavaria, linewidth = 1, fill = NA) + coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) + theme_void()
bavaria <- de_nuts1_pop |> filter(nuts == "DE2")st_join( st_centroid(de_nuts3), bavaria, join = st_is_within_distance, dist = 100000, left = FALSE # Performs inner join) |> ggplot() + geom_sf() + geom_sf(data = bavaria, linewidth = 1, fill = NA) + coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) + theme_void()
bavaria <- de_nuts1_pop |> filter(nuts == "DE2")st_join( st_centroid(de_nuts3), bavaria, join = negate(st_is_within_distance), dist = 100000, left = FALSE # Performs inner join) |> ggplot() + geom_sf() + geom_sf(data = bavaria, linewidth = 1, fill = NA) + coord_sf(xlim = st_bbox(de_nuts3)[c(1, 3)], ylim = st_bbox(de_nuts3)[c(2, 4)]) + theme_void()
Returns a numeric matrix of length(x)
rows and length(y)
columns
bielefeld <- de_nuts3 |> filter(str_detect(name, "Bielefeld"))de_nuts3 |> mutate(dist = st_distance( x = geometry, y = bielefeld )[, 1]) |> arrange(dist) |> print(width = 60)
Simple feature collection with 401 features and 3 fieldsGeometry type: MULTIPOLYGONDimension: XYBounding box: xmin: 4031952 ymin: 2684075 xmax: 4671180 ymax: 3543086Projected CRS: ETRS89-extended / LAEA Europe# A tibble: 401 × 4 nuts name geometry dist <chr> <chr> <MULTIPOLYGON [m]> [m] 1 DEA41 Bielefeld, Kreisf… (((4228708 3217545, 4225… 0 2 DEA42 Gütersloh (((4216273 3222309, 4214… 0 3 DEA43 Herford (((4247622 3231061, 4228… 0 4 DEA45 Lippe (((4263781 3220253, 4273… 0 5 DE94E Osnabrück, Landkr… (((4206125 3266872, 4205… 4471. 6 DEA47 Paderborn (((4249193 3187118, 4250… 9360. 7 DEA46 Minden-Lübbecke (((4261478 3256200, 4252… 17729. 8 DEA38 Warendorf (((4190451 3218063, 4195… 20998. 9 DEA5B Soest (((4210655 3179982, 4221… 26458.10 DE928 Schaumburg (((4283343 3240666, 4265… 27191.# ℹ 391 more rows
Returns a numeric matrix of length(x)
rows and length(y)
columns
bielefeld <- de_nuts3 |> filter(str_detect(name, "Bielefeld"))de_nuts3 |> mutate(dist = st_distance( x = geometry, y = st_centroid(bielefeld) )[, 1]) |> arrange(dist) |> print(width = 60)
Simple feature collection with 401 features and 3 fieldsGeometry type: MULTIPOLYGONDimension: XYBounding box: xmin: 4031952 ymin: 2684075 xmax: 4671180 ymax: 3543086Projected CRS: ETRS89-extended / LAEA Europe# A tibble: 401 × 4 nuts name geometry dist <chr> <chr> <MULTIPOLYGON [m]> [m] 1 DEA41 Bielefeld, Kreisf… (((4228708 3217545, 4225… 0 2 DEA42 Gütersloh (((4216273 3222309, 4214… 5866. 3 DEA45 Lippe (((4263781 3220253, 4273… 6058. 4 DEA43 Herford (((4247622 3231061, 4228… 7301. 5 DE94E Osnabrück, Landkr… (((4206125 3266872, 4205… 14625. 6 DEA47 Paderborn (((4249193 3187118, 4250… 19621. 7 DEA46 Minden-Lübbecke (((4261478 3256200, 4252… 25521. 8 DEA38 Warendorf (((4190451 3218063, 4195… 28652. 9 DEA5B Soest (((4210655 3179982, 4221… 34279.10 DE928 Schaumburg (((4283343 3240666, 4265… 36136.# ℹ 391 more rows
st_buffer(us_centroids, 100000) |> filter(name %in% c("Massachusetts", "Connecticut")) |> st_intersection() |> ggplot() + geom_sf(aes(fill = factor(n.overlaps)), show.legend = FALSE) + geom_sf_text(aes(label = n.overlaps)) + theme_void()
#st_buffer(us_centroids, 100000) |> filter(name %in% c("Massachusetts", "Connecticut")) |> st_union() |> ggplot() + geom_sf() + theme_void()
st_buffer(us_centroids, 100000) |> filter(name %in% c("Massachusetts", "Connecticut")) |> st_difference() |> slice(2) |> ggplot() + geom_sf() + theme_void()
st_buffer(us_centroids, 100000) |> filter(name %in% c("Massachusetts", "Connecticut")) |> st_geometry() |> do.call(what = st_sym_difference) |> ggplot() + geom_sf() + theme_void()
library(terra)(de_elevation <- rast( "https://lo-ng.netlify.app/slides/data/de_elevation.tif"))
class : SpatRaster dimensions : 119, 140, 1 (nrow, ncol, nlyr)resolution : 0.07145545, 0.07145545 (x, y)extent : 5.50207, 15.50583, 47.00592, 55.50912 (xmin, xmax, ymin, ymax)coord. ref. : lon/lat WGS 84 (EPSG:4326) source : de_elevation.tif name : elev min value : -94 max value : 2759
plot(de_elevation)
(de_nuts3 <- de_nuts3 |> st_transform(crs(de_elevation)))
Simple feature collection with 401 features and 2 fieldsGeometry type: MULTIPOLYGONDimension: XYBounding box: xmin: 5.877085 ymin: 47.27011 xmax: 15.02282 ymax: 54.98211Geodetic CRS: WGS 84# A tibble: 401 × 3 nuts name geometry * <chr> <chr> <MULTIPOLYGON [°]> 1 DE254 Nürnberg, Kreisfreie Stadt (((11.03021 49.53537, 11.17818 49.47409, 1… 2 DE255 Schwabach, Kreisfreie Stadt (((11.07981 49.33928, 11.07731 49.31788, 1… 3 DE256 Ansbach, Landkreis (((10.86784 49.35613, 10.89699 49.26011, 1… 4 DE257 Erlangen-Höchstadt (((10.92734 49.76843, 11.09481 49.6078, 11… 5 DE234 Amberg-Sulzbach (((11.93422 49.22107, 11.55776 49.41904, 1… 6 DE235 Cham (((13.17091 49.17358, 13.11751 49.12614, 1… 7 DE236 Neumarkt i. d. OPf. (((11.93422 49.22107, 11.9359 49.19507, 11… 8 DE237 Neustadt a. d. Waldnaab (((12.59378 49.54219, 12.11549 49.54795, 1… 9 DE238 Regensburg, Landkreis (((12.47903 49.03199, 12.4102 48.87916, 12…10 DE239 Schwandorf (((12.59378 49.54219, 12.63766 49.51946, 1…# ℹ 391 more rows
bavaria <- st_transform(bavaria, crs(de_elevation))de_elevation |> crop(bavaria) |> # plot()
bavaria <- st_transform(bavaria, crs(de_elevation))de_elevation |> crop(bavaria) |> mask(bavaria) |> plot()
de_elevation
class : SpatRaster dimensions : 119, 140, 1 (nrow, ncol, nlyr)resolution : 0.07145545, 0.07145545 (x, y)extent : 5.50207, 15.50583, 47.00592, 55.50912 (xmin, xmax, ymin, ymax)coord. ref. : lon/lat WGS 84 (EPSG:4326) source : de_elevation.tif name : elev min value : -94 max value : 2759
de_elevation |> extract(bavaria)
ID elev1 1 6262 1 4743 1 3754 1 3665 1 6246 1 6167 1 6588 1 6309 1 48810 1 38511 1 32512 1 30113 1 33514 1 34615 1 56816 1 60217 1 60918 1 63519 1 55520 1 55821 1 53922 1 55423 1 46424 1 52625 1 59626 1 46927 1 39128 1 32529 1 29730 1 31031 1 31432 1 31733 1 31434 1 32535 1 35736 1 37237 1 38138 1 38339 1 41540 1 46041 1 51442 1 51643 1 59344 1 61145 1 60046 1 58247 1 56548 1 52349 1 53450 1 56451 1 38852 1 41453 1 43154 1 44955 1 36056 1 31257 1 30958 1 31659 1 31360 1 31561 1 36062 1 35563 1 34864 1 33465 1 33566 1 33767 1 35568 1 34269 1 34570 1 37071 1 40872 1 45773 1 52274 1 57375 1 61876 1 61977 1 58878 1 57179 1 53380 1 56281 1 59582 1 61983 1 39384 1 32985 1 33886 1 34987 1 33588 1 29989 1 29890 1 30191 1 32392 1 34193 1 34394 1 34395 1 35196 1 33997 1 34398 1 35699 1 338100 1 337101 1 324102 1 322103 1 325104 1 322105 1 318106 1 325107 1 350108 1 390109 1 432110 1 454111 1 505112 1 564113 1 585114 1 578115 1 596116 1 603117 1 605118 1 593119 1 588120 1 348121 1 416122 1 420123 1 313124 1 291125 1 289126 1 281127 1 268128 1 302129 1 313130 1 298131 1 301132 1 337133 1 354134 1 340135 1 294136 1 312137 1 369138 1 345139 1 328140 1 312141 1 302142 1 321143 1 377144 1 415145 1 389146 1 382147 1 375148 1 363149 1 397150 1 406151 1 474152 1 551153 1 627154 1 715155 1 646156 1 597157 1 572158 1 556159 1 536160 1 162161 1 256162 1 228163 1 320164 1 376165 1 377166 1 356167 1 372168 1 298169 1 268170 1 266171 1 276172 1 289173 1 294174 1 283175 1 251176 1 231177 1 247178 1 288179 1 301180 1 275181 1 293182 1 346183 1 350184 1 326185 1 297186 1 286187 1 334188 1 449189 1 504190 1 468191 1 462192 1 437193 1 376194 1 369195 1 382196 1 429197 1 552198 1 707199 1 782200 1 661201 1 612202 1 581203 1 557204 1 545205 1 551206 1 145207 1 164208 1 230209 1 317210 1 389211 1 422212 1 401213 1 324214 1 292215 1 271216 1 254217 1 261218 1 303219 1 292220 1 269221 1 247222 1 229223 1 223224 1 242225 1 296226 1 332227 1 345228 1 335229 1 308230 1 301231 1 278232 1 283233 1 336234 1 433235 1 500236 1 464237 1 456238 1 465239 1 459240 1 398241 1 383242 1 421243 1 524244 1 640245 1 677246 1 614247 1 623248 1 628249 1 601250 1 547251 1 526252 1 557253 1 605254 1 172255 1 237256 1 333257 1 403258 1 430259 1 397260 1 289261 1 261262 1 279263 1 267264 1 260265 1 306266 1 300267 1 283268 1 263269 1 244270 1 231271 1 238272 1 333273 1 387274 1 389275 1 356276 1 324277 1 299278 1 280279 1 272280 1 322281 1 448282 1 492283 1 459284 1 434285 1 434286 1 456287 1 475288 1 450289 1 439290 1 462291 1 501292 1 513293 1 528294 1 607295 1 615296 1 560297 1 504298 1 513299 1 536300 1 613301 1 672302 1 659303 1 229304 1 214305 1 304306 1 346307 1 344308 1 306309 1 238310 1 244311 1 281312 1 296313 1 283314 1 257315 1 261316 1 283317 1 256318 1 226319 1 230320 1 258321 1 363322 1 389323 1 372324 1 343325 1 323326 1 306327 1 296328 1 282329 1 297330 1 365331 1 438332 1 435333 1 437334 1 442335 1 456336 1 515337 1 504338 1 501339 1 484340 1 460341 1 459342 1 486343 1 555344 1 546345 1 500346 1 493347 1 529348 1 580349 1 660350 1 689351 1 230352 1 287353 1 307354 1 301355 1 323356 1 322357 1 281358 1 254359 1 272360 1 241361 1 223362 1 262363 1 319364 1 380365 1 387366 1 366367 1 341368 1 322369 1 302370 1 293371 1 298372 1 301373 1 294374 1 358375 1 434376 1 474377 1 484378 1 481379 1 482380 1 471381 1 509382 1 505383 1 462384 1 450385 1 443386 1 477387 1 485388 1 472389 1 472390 1 532391 1 645392 1 705393 1 276394 1 338395 1 351396 1 353397 1 320398 1 299399 1 272400 1 270401 1 254402 1 260403 1 306404 1 353405 1 347406 1 359407 1 357408 1 334409 1 311410 1 308411 1 300412 1 304413 1 306414 1 298415 1 358416 1 435417 1 487418 1 515419 1 517420 1 469421 1 448422 1 477423 1 478424 1 449425 1 443426 1 434427 1 431428 1 429429 1 437430 1 464431 1 529432 1 599433 1 619434 1 419435 1 378436 1 390437 1 309438 1 295439 1 302440 1 302441 1 312442 1 339443 1 354444 1 338445 1 331446 1 333447 1 340448 1 344449 1 346450 1 332451 1 309452 1 298453 1 315454 1 365455 1 386456 1 422457 1 470458 1 504459 1 469460 1 475461 1 495462 1 474463 1 437464 1 461465 1 460466 1 455467 1 433468 1 427469 1 468470 1 523471 1 566472 1 562473 1 543474 1 319475 1 328476 1 345477 1 361478 1 367479 1 347480 1 330481 1 348482 1 370483 1 379484 1 374485 1 363486 1 345487 1 318488 1 302489 1 316490 1 351491 1 360492 1 369493 1 395494 1 436495 1 457496 1 487497 1 497498 1 468499 1 430500 1 443501 1 476502 1 499503 1 474504 1 444505 1 460506 1 516507 1 574508 1 594509 1 618510 1 655511 1 408512 1 408513 1 381514 1 387515 1 408516 1 413517 1 396518 1 376519 1 362520 1 353521 1 334522 1 314523 1 311524 1 340525 1 361526 1 383527 1 418528 1 468529 1 514530 1 518531 1 523532 1 494533 1 443534 1 414535 1 443536 1 471537 1 460538 1 435539 1 433540 1 478541 1 513542 1 548543 1 590544 1 620545 1 583546 1 423547 1 449548 1 441549 1 458550 1 455551 1 438552 1 415553 1 393554 1 386555 1 382556 1 371557 1 349558 1 325559 1 347560 1 373561 1 406562 1 442563 1 485564 1 548565 1 549566 1 533567 1 507568 1 480569 1 460570 1 428571 1 426572 1 406573 1 388574 1 409575 1 456576 1 458577 1 493578 1 521579 1 516580 1 503581 1 621582 1 433583 1 471584 1 454585 1 454586 1 457587 1 454588 1 442589 1 428590 1 426591 1 415592 1 401593 1 379594 1 351595 1 361596 1 387597 1 421598 1 443599 1 455600 1 500601 1 542602 1 532603 1 506604 1 484605 1 469606 1 441607 1 443608 1 403609 1 372610 1 408611 1 436612 1 441613 1 469614 1 490615 1 491616 1 501617 1 545618 1 544619 1 512620 1 485621 1 470622 1 478623 1 476624 1 453625 1 451626 1 452627 1 448628 1 442629 1 438630 1 423631 1 410632 1 393633 1 371634 1 368635 1 400636 1 424637 1 433638 1 443639 1 495640 1 526641 1 534642 1 529643 1 508644 1 463645 1 432646 1 428647 1 404648 1 393649 1 425650 1 399651 1 422652 1 432653 1 430654 1 423655 1 419656 1 432657 1 449658 1 506659 1 576660 1 603661 1 709662 1 487663 1 472664 1 483665 1 473666 1 461667 1 451668 1 441669 1 429670 1 449671 1 447672 1 428673 1 406674 1 396675 1 404676 1 424677 1 430678 1 433679 1 449680 1 494681 1 518682 1 523683 1 518684 1 509685 1 496686 1 437687 1 404688 1 389689 1 407690 1 456691 1 437692 1 471693 1 467694 1 459695 1 460696 1 430697 1 456698 1 468699 1 512700 1 594701 1 696702 1 821703 1 908704 1 476705 1 473706 1 467707 1 471708 1 469709 1 459710 1 453711 1 445712 1 452713 1 438714 1 432715 1 470716 1 492717 1 482718 1 475719 1 479720 1 490721 1 488722 1 491723 1 504724 1 511725 1 507726 1 490727 1 452728 1 425729 1 389730 1 387731 1 448732 1 476733 1 527734 1 546735 1 569736 1 581737 1 483738 1 529739 1 561740 1 556741 1 553742 1 630743 1 813744 1 920745 1 880746 1 885747 1 473748 1 475749 1 474750 1 462751 1 461752 1 513753 1 520754 1 469755 1 451756 1 488757 1 560758 1 560759 1 534760 1 510761 1 492762 1 480763 1 472764 1 465765 1 476766 1 503767 1 520768 1 492769 1 458770 1 422771 1 383772 1 362773 1 374774 1 406775 1 423776 1 470777 1 536778 1 560779 1 432780 1 503781 1 664782 1 703783 1 618784 1 560785 1 627786 1 698787 1 690788 1 748789 1 976790 1 460791 1 439792 1 443793 1 499794 1 563795 1 511796 1 489797 1 515798 1 552799 1 549800 1 528801 1 502802 1 483803 1 483804 1 508805 1 489806 1 466807 1 470808 1 489809 1 479810 1 444811 1 407812 1 390813 1 374814 1 341815 1 334816 1 329817 1 340818 1 361819 1 375820 1 356821 1 386822 1 508823 1 639824 1 701825 1 649826 1 683827 1 641828 1 651829 1 732830 1 860831 1 996832 1 1101833 1 438834 1 417835 1 421836 1 462837 1 521838 1 521839 1 518840 1 516841 1 505842 1 504843 1 487844 1 466845 1 461846 1 475847 1 485848 1 464849 1 436850 1 416851 1 409852 1 413853 1 397854 1 397855 1 399856 1 394857 1 376858 1 358859 1 349860 1 341861 1 332862 1 324863 1 325864 1 331865 1 346866 1 388867 1 473868 1 604869 1 679870 1 662871 1 675872 1 691873 1 674874 1 723875 1 824876 1 861877 1 900878 1 479879 1 446880 1 443881 1 465882 1 505883 1 510884 1 507885 1 497886 1 476887 1 471888 1 440889 1 420890 1 412891 1 412892 1 409893 1 404894 1 390895 1 377896 1 374897 1 390898 1 404899 1 412900 1 417901 1 415902 1 405903 1 390904 1 387905 1 384906 1 377907 1 364908 1 353909 1 333910 1 324911 1 318912 1 332913 1 390914 1 424915 1 499916 1 589917 1 608918 1 529919 1 572920 1 604921 1 669922 1 783923 1 896924 1 878925 1 531926 1 499927 1 482928 1 460929 1 460930 1 458931 1 445932 1 432933 1 433934 1 436935 1 401936 1 382937 1 374938 1 368939 1 364940 1 367941 1 374942 1 393943 1 413944 1 413945 1 442946 1 443947 1 448948 1 449949 1 436950 1 428951 1 436952 1 426953 1 408954 1 391955 1 367956 1 343957 1 336958 1 333959 1 327960 1 317961 1 317962 1 382963 1 430964 1 459965 1 482966 1 461967 1 473968 1 551969 1 655970 1 741971 1 779972 1 898973 1 491974 1 475975 1 451976 1 425977 1 414978 1 411979 1 412980 1 421981 1 434982 1 405983 1 386984 1 384985 1 386986 1 385987 1 387988 1 389989 1 411990 1 435991 1 451992 1 455993 1 470994 1 468995 1 467996 1 463997 1 448998 1 431999 1 4241000 1 4111001 1 3971002 1 3881003 1 3781004 1 3751005 1 3751006 1 3691007 1 3561008 1 3381009 1 3261010 1 3681011 1 3921012 1 4041013 1 4201014 1 4191015 1 4301016 1 5061017 1 6181018 1 7131019 1 7251020 1 4631021 1 4441022 1 4341023 1 4261024 1 4211025 1 4241026 1 4411027 1 4291028 1 4401029 1 4621030 1 4601031 1 4091032 1 4081033 1 4151034 1 4231035 1 4321036 1 4381037 1 4351038 1 4561039 1 4691040 1 4711041 1 4821042 1 4841043 1 4731044 1 4581045 1 4411046 1 4241047 1 4261048 1 4331049 1 4311050 1 4261051 1 4241052 1 4271053 1 4221054 1 4131055 1 4021056 1 3891057 1 3681058 1 3541059 1 3651060 1 3801061 1 3921062 1 3951063 1 3831064 1 4031065 1 4371066 1 5141067 1 6231068 1 6921069 1 4441070 1 4461071 1 4451072 1 4451073 1 4511074 1 4661075 1 4731076 1 4491077 1 4591078 1 4821079 1 4741080 1 4411081 1 4461082 1 4561083 1 4681084 1 4781085 1 4621086 1 4741087 1 4831088 1 4851089 1 4821090 1 4771091 1 4631092 1 4471093 1 4371094 1 4381095 1 4521096 1 4721097 1 4721098 1 4681099 1 4631100 1 4591101 1 4561102 1 4451103 1 4371104 1 4301105 1 4231106 1 4101107 1 3961108 1 4011109 1 4011110 1 3951111 1 3911112 1 3771113 1 5791114 1 4641115 1 4661116 1 4691117 1 4731118 1 4891119 1 4921120 1 4881121 1 5051122 1 4951123 1 4631124 1 4671125 1 4881126 1 4891127 1 4731128 1 4851129 1 4971130 1 5011131 1 4941132 1 4761133 1 4831134 1 4801135 1 4741136 1 4661137 1 4511138 1 4261139 1 4411140 1 4631141 1 4791142 1 4851143 1 4821144 1 4731145 1 4741146 1 4741147 1 4691148 1 4651149 1 4531150 1 4461151 1 4401152 1 4321153 1 4241154 1 4161155 1 4111156 1 3981157 1 3731158 1 3421159 1 3391160 1 4851161 1 4831162 1 4881163 1 4951164 1 5011165 1 4901166 1 5081167 1 5061168 1 4881169 1 5031170 1 5061171 1 4851172 1 4811173 1 4921174 1 5001175 1 5001176 1 5091177 1 5081178 1 4981179 1 4871180 1 4861181 1 4741182 1 4701183 1 4621184 1 4481185 1 4381186 1 4281187 1 4631188 1 4901189 1 4931190 1 4781191 1 4731192 1 4831193 1 4821194 1 4751195 1 4681196 1 4651197 1 4511198 1 4521199 1 4511200 1 4481201 1 4511202 1 4651203 1 4221204 1 3791205 1 3421206 1 3151207 1 3321208 1 5051209 1 5081210 1 5141211 1 5171212 1 5151213 1 5141214 1 5211215 1 5171216 1 5071217 1 5201218 1 5291219 1 5121220 1 5021221 1 5071222 1 5201223 1 5151224 1 5111225 1 5061226 1 5001227 1 4921228 1 4801229 1 4751230 1 4701231 1 4641232 1 4591233 1 4611234 1 4611235 1 4791236 1 4871237 1 4821238 1 4701239 1 4621240 1 4661241 1 4591242 1 4481243 1 4421244 1 4491245 1 4491246 1 4521247 1 4541248 1 4581249 1 4661250 1 4471251 1 4011252 1 3611253 1 3451254 1 5281255 1 5391256 1 5441257 1 5431258 1 5411259 1 5401260 1 5481261 1 5601262 1 5671263 1 5441264 1 5311265 1 5271266 1 5321267 1 5431268 1 5321269 1 5251270 1 5151271 1 5051272 1 4961273 1 4861274 1 4881275 1 4861276 1 4841277 1 4861278 1 4951279 1 4971280 1 5101281 1 5181282 1 5171283 1 5101284 1 4931285 1 4601286 1 4341287 1 4191288 1 4131289 1 4151290 1 4201291 1 4151292 1 4061293 1 4001294 1 4001295 1 3861296 1 5541297 1 5611298 1 5671299 1 5841300 1 5561301 1 5621302 1 5821303 1 5901304 1 5701305 1 5591306 1 5581307 1 5601308 1 5661309 1 5741310 1 5601311 1 5531312 1 5401313 1 5261314 1 5171315 1 5151316 1 5131317 1 5121318 1 5131319 1 5161320 1 5211321 1 5251322 1 5521323 1 5641324 1 5561325 1 5331326 1 5091327 1 4801328 1 4651329 1 4571330 1 4491331 1 4491332 1 4431333 1 4331334 1 4221335 1 4191336 1 5801337 1 6001338 1 6201339 1 5881340 1 5921341 1 6031342 1 6011343 1 5841344 1 5911345 1 5931346 1 5991347 1 6031348 1 5921349 1 5631350 1 5771351 1 5811352 1 5751353 1 5651354 1 5601355 1 5481356 1 5441357 1 5461358 1 5511359 1 5571360 1 5621361 1 5601362 1 5391363 1 5101364 1 4901365 1 4941366 1 5371367 1 5361368 1 5131369 1 4951370 1 5001371 1 4801372 1 6031373 1 6241374 1 6261375 1 6291376 1 6321377 1 6281378 1 6191379 1 6191380 1 6241381 1 6251382 1 6391383 1 6401384 1 6001385 1 5561386 1 6131387 1 6321388 1 6271389 1 6221390 1 6121391 1 6011392 1 5871393 1 5831394 1 5901395 1 5961396 1 5591397 1 5331398 1 5011399 1 4731400 1 4671401 1 5061402 1 5701403 1 5671404 1 5381405 1 5251406 1 5391407 1 4991408 1 4381409 1 6241410 1 6371411 1 6631412 1 6801413 1 7011414 1 7011415 1 6831416 1 6631417 1 6671418 1 6781419 1 6721420 1 6801421 1 6761422 1 6291423 1 5641424 1 6591425 1 6531426 1 6281427 1 6451428 1 6331429 1 6661430 1 6531431 1 6361432 1 6251433 1 6021434 1 5411435 1 5161436 1 4911437 1 4701438 1 4751439 1 5281440 1 5611441 1 5501442 1 5371443 1 5481444 1 5751445 1 5311446 1 4651447 1 4281448 1 6811449 1 7151450 1 7701451 1 7851452 1 7781453 1 7461454 1 7151455 1 7301456 1 7611457 1 7271458 1 7131459 1 7011460 1 6461461 1 5611462 1 6381463 1 6311464 1 6141465 1 6361466 1 6181467 1 6941468 1 7051469 1 6901470 1 6631471 1 6151472 1 5521473 1 5001474 1 4701475 1 4661476 1 4871477 1 5381478 1 5331479 1 5201480 1 5181481 1 5451482 1 6101483 1 6091484 1 5531485 1 4901486 1 4511487 1 7421488 1 7221489 1 7741490 1 8171491 1 8051492 1 7651493 1 7411494 1 7831495 1 8111496 1 7581497 1 7371498 1 7261499 1 6691500 1 5871501 1 6361502 1 6331503 1 6151504 1 6211505 1 6371506 1 6891507 1 7291508 1 7461509 1 7361510 1 7061511 1 6591512 1 5681513 1 4891514 1 4811515 1 5731516 1 6801517 1 6881518 1 6211519 1 6181520 1 7051521 1 7011522 1 7571523 1 7801524 1 6611525 1 4801526 1 8601527 1 8721528 1 7571529 1 7191530 1 8361531 1 8271532 1 7861533 1 7741534 1 8071535 1 8021536 1 7801537 1 7771538 1 7691539 1 7191540 1 6421541 1 6661542 1 6421543 1 6191544 1 6721545 1 8701546 1 7481547 1 8551548 1 8911549 1 8491550 1 9311551 1 8721552 1 9051553 1 7551554 1 6331555 1 7871556 1 9981557 1 10071558 1 8451559 1 8521560 1 10501561 1 9161562 1 9711563 1 9461564 1 8161565 1 7081566 1 9051567 1 9071568 1 7881569 1 7681570 1 8931571 1 8911572 1 8451573 1 8161574 1 8221575 1 7711576 1 8851577 1 9371578 1 9131579 1 8581580 1 7031581 1 7081582 1 7371583 1 7871584 1 8881585 1 11041586 1 8531587 1 10201588 1 10901589 1 10381590 1 11931591 1 11491592 1 11661593 1 10531594 1 8431595 1 7061596 1 9021597 1 9801598 1 11381599 1 11171600 1 10381601 1 10371602 1 10131603 1 9701604 1 9631605 1 5931606 1 6991607 1 7191608 1 7751609 1 8751610 1 9511611 1 9111612 1 8101613 1 9961614 1 10461615 1 10541616 1 9951617 1 8981618 1 8421619 1 10011620 1 12081621 1 12441622 1 11661623 1 10891624 1 8801625 1 10241626 1 10121627 1 9721628 1 10121629 1 10441630 1 10021631 1 11001632 1 11871633 1 12221634 1 12511635 1 12621636 1 11871637 1 13721638 1 12051639 1 9631640 1 13721641 1 10701642 1 11681643 1 10701644 1 8731645 1 11311646 1 12321647 1 14051648 1 13631649 1 12291650 1 11311651 1 10401652 1 11611653 1 11651654 1 11561655 1 12051656 1 12081657 1 12491658 1 16871659 1 14701660 1 17551661 1 12021662 1 13071663 1 11901664 1 9651665 1 13601666 1 14471667 1 14281668 1 14371669 1 13481670 1 11691671 1 12921672 1 15301673 1 16591674 1 13881675 1 12641676 1 12021677 1 16401678 1 16941679 1 1647
de_elevation |> extract(bavaria) |> summarise(across(elev, lst(min, max, mean)))
elev_min elev_max elev_mean1 145 1755 517.601
(de_nuts1 <- de_nuts3 |> group_by(nuts = str_sub(nuts, 1, 3)) |> summarise(geometry = st_union(geometry)))
Simple feature collection with 16 features and 1 fieldGeometry type: GEOMETRYDimension: XYBounding box: xmin: 5.877085 ymin: 47.27011 xmax: 15.02282 ymax: 54.98211Geodetic CRS: WGS 84# A tibble: 16 × 2 nuts geometry <chr> <GEOMETRY [°]> 1 DE1 POLYGON ((9.182192 47.65589, 9.364413 47.62806, 9.495604 47.55145, 9.5… 2 DE2 POLYGON ((10.7292 50.23001, 10.61011 50.22799, 10.58959 50.31986, 10.4… 3 DE3 POLYGON ((13.39854 52.64819, 13.16426 52.5989, 13.13901 52.50206, 13.1… 4 DE4 POLYGON ((12.98468 53.16499, 12.92016 53.19372, 12.8793 53.18263, 12.8… 5 DE5 MULTIPOLYGON (((8.585106 53.20144, 8.48533 53.22712, 8.654899 53.10886… 6 DE6 MULTIPOLYGON (((10.30795 53.4332, 10.23668 53.49635, 10.17859 53.53497… 7 DE7 POLYGON ((8.99056 50.06712, 9.165176 50.10605, 9.270941 50.14205, 9.40… 8 DE8 POLYGON ((12.33175 53.31801, 12.74191 53.20144, 12.77713 53.18877, 12.… 9 DE9 MULTIPOLYGON (((6.930503 53.68451, 6.848968 53.69901, 6.809192 53.6793…10 DEA POLYGON ((7.785898 50.93991, 7.851496 50.92583, 8.03969 50.69738, 8.12…11 DEB POLYGON ((8.414774 49.59505, 8.37993 49.68695, 8.446378 49.7308, 8.448…12 DEC POLYGON ((6.556986 49.41921, 6.723466 49.21883, 6.784494 49.16084, 6.9…13 DED POLYGON ((13.65217 50.73036, 13.82971 50.73285, 14.36331 50.90343, 14.…14 DEE POLYGON ((11.00878 52.49675, 10.93454 52.47179, 11.05106 52.37008, 11.…15 DEF MULTIPOLYGON (((7.940571 54.20555, 7.888383 54.23613, 7.800922 54.2111…16 DEG POLYGON ((10.38003 51.57562, 10.26577 51.48461, 9.928339 51.3753, 9.98…
de_nuts1 |> print(width = 44)
Simple feature collection with 16 features and 1 fieldGeometry type: GEOMETRYDimension: XYBounding box: xmin: 5.877085 ymin: 47.27011 xmax: 15.02282 ymax: 54.98211Geodetic CRS: WGS 84# A tibble: 16 × 2 nuts geometry <chr> <GEOMETRY [°]> 1 DE1 POLYGON ((9.182192 47.65589, 9.364… 2 DE2 POLYGON ((10.7292 50.23001, 10.610… 3 DE3 POLYGON ((13.39854 52.64819, 13.16… 4 DE4 POLYGON ((12.98468 53.16499, 12.92… 5 DE5 MULTIPOLYGON (((8.585106 53.20144,… 6 DE6 MULTIPOLYGON (((10.30795 53.4332, … 7 DE7 POLYGON ((8.99056 50.06712, 9.1651… 8 DE8 POLYGON ((12.33175 53.31801, 12.74… 9 DE9 MULTIPOLYGON (((6.930503 53.68451,…10 DEA POLYGON ((7.785898 50.93991, 7.851…11 DEB POLYGON ((8.414774 49.59505, 8.379…12 DEC POLYGON ((6.556986 49.41921, 6.723…13 DED POLYGON ((13.65217 50.73036, 13.82…14 DEE POLYGON ((11.00878 52.49675, 10.93…15 DEF MULTIPOLYGON (((7.940571 54.20555,…16 DEG POLYGON ((10.38003 51.57562, 10.26…
de_nuts1 |> bind_cols( extract(de_elevation, de_nuts1) |> nest(elev_rast = -ID) |> select(-ID) ) |> print(width = 44)
Simple feature collection with 16 features and 2 fieldsGeometry type: GEOMETRYDimension: XYBounding box: xmin: 5.877085 ymin: 47.27011 xmax: 15.02282 ymax: 54.98211Geodetic CRS: WGS 84# A tibble: 16 × 3 nuts geometry elev_rast * <chr> <GEOMETRY [°]> <list> 1 DE1 POLYGON ((9.182192 47.65… <tibble> 2 DE2 POLYGON ((10.7292 50.230… <tibble> 3 DE3 POLYGON ((13.39854 52.64… <tibble> 4 DE4 POLYGON ((12.98468 53.16… <tibble> 5 DE5 MULTIPOLYGON (((8.585106… <tibble> 6 DE6 MULTIPOLYGON (((10.30795… <tibble> 7 DE7 POLYGON ((8.99056 50.067… <tibble> 8 DE8 POLYGON ((12.33175 53.31… <tibble> 9 DE9 MULTIPOLYGON (((6.930503… <tibble> 10 DEA POLYGON ((7.785898 50.93… <tibble> 11 DEB POLYGON ((8.414774 49.59… <tibble> 12 DEC POLYGON ((6.556986 49.41… <tibble> 13 DED POLYGON ((13.65217 50.73… <tibble> 14 DEE POLYGON ((11.00878 52.49… <tibble> 15 DEF MULTIPOLYGON (((7.940571… <tibble> 16 DEG POLYGON ((10.38003 51.57… <tibble>
de_nuts1 |> bind_cols( extract(de_elevation, de_nuts1) |> nest(elev_rast = -ID) |> select(-ID) ) |> st_drop_geometry() |> print(width = 44)
# A tibble: 16 × 2 nuts elev_rast * <chr> <list> 1 DE1 <tibble [866 × 1]> 2 DE2 <tibble [1,679 × 1]> 3 DE3 <tibble [24 × 1]> 4 DE4 <tibble [765 × 1]> 5 DE5 <tibble [10 × 1]> 6 DE6 <tibble [19 × 1]> 7 DE7 <tibble [524 × 1]> 8 DE8 <tibble [617 × 1]> 9 DE9 <tibble [1,253 × 1]>10 DEA <tibble [867 × 1]> 11 DEB <tibble [485 × 1]> 12 DEC <tibble [61 × 1]> 13 DED <tibble [464 × 1]> 14 DEE <tibble [529 × 1]> 15 DEF <tibble [415 × 1]> 16 DEG <tibble [404 × 1]>
de_nuts1 |> bind_cols( extract(de_elevation, de_nuts1) |> nest(elev_rast = -ID) |> select(-ID) ) |> st_drop_geometry() |> mutate(elev_sum = map(elev_rast, \(x) { summarise(x, across(elev, lst(min, max, mean))) })) |> print(width = 44)
# A tibble: 16 × 3 nuts elev_rast elev_sum <chr> <list> <list> 1 DE1 <tibble [866 × 1]> <tibble> 2 DE2 <tibble [1,679 × 1]> <tibble> 3 DE3 <tibble [24 × 1]> <tibble> 4 DE4 <tibble [765 × 1]> <tibble> 5 DE5 <tibble [10 × 1]> <tibble> 6 DE6 <tibble [19 × 1]> <tibble> 7 DE7 <tibble [524 × 1]> <tibble> 8 DE8 <tibble [617 × 1]> <tibble> 9 DE9 <tibble [1,253 × 1]> <tibble>10 DEA <tibble [867 × 1]> <tibble>11 DEB <tibble [485 × 1]> <tibble>12 DEC <tibble [61 × 1]> <tibble>13 DED <tibble [464 × 1]> <tibble>14 DEE <tibble [529 × 1]> <tibble>15 DEF <tibble [415 × 1]> <tibble>16 DEG <tibble [404 × 1]> <tibble>
de_nuts1 |> bind_cols( extract(de_elevation, de_nuts1) |> nest(elev_rast = -ID) |> select(-ID) ) |> st_drop_geometry() |> mutate(elev_sum = map(elev_rast, \(x) { summarise(x, across(elev, lst(min, max, mean))) })) |> select(-elev_rast) |> print(width = 44)
# A tibble: 16 × 2 nuts elev_sum <chr> <list> 1 DE1 <tibble [1 × 3]> 2 DE2 <tibble [1 × 3]> 3 DE3 <tibble [1 × 3]> 4 DE4 <tibble [1 × 3]> 5 DE5 <tibble [1 × 3]> 6 DE6 <tibble [1 × 3]> 7 DE7 <tibble [1 × 3]> 8 DE8 <tibble [1 × 3]> 9 DE9 <tibble [1 × 3]>10 DEA <tibble [1 × 3]>11 DEB <tibble [1 × 3]>12 DEC <tibble [1 × 3]>13 DED <tibble [1 × 3]>14 DEE <tibble [1 × 3]>15 DEF <tibble [1 × 3]>16 DEG <tibble [1 × 3]>
de_nuts1 |> bind_cols( extract(de_elevation, de_nuts1) |> nest(elev_rast = -ID) |> select(-ID) ) |> st_drop_geometry() |> mutate(elev_sum = map(elev_rast, \(x) { summarise(x, across(elev, lst(min, max, mean))) })) |> select(-elev_rast) |> unnest_wider(elev_sum) |> print(width = 44)
# A tibble: 16 × 4 nuts elev_min elev_max elev_mean <chr> <int> <int> <dbl> 1 DE1 90 1074 498. 2 DE2 145 1755 518. 3 DE3 39 51 43.7 4 DE4 1 156 63.8 5 DE5 -1 17 4.8 6 DE6 -5 48 15.3 7 DE7 83 737 302. 8 DE8 -4 116 38.5 9 DE9 -8 714 71.710 DEA 14 679 179. 11 DEB 84 590 321. 12 DEC 212 486 313. 13 DED 81 891 305. 14 DEE 19 580 116. 15 DEF -21 78 19.916 DEG 148 740 367.
de_nuts1 |> bind_cols( extract(de_elevation, de_nuts1) |> nest(elev_rast = -ID) |> select(-ID) ) |> st_drop_geometry() |> mutate(elev_sum = map(elev_rast, \(x) { summarise(x, across(elev, lst(min, max, mean))) })) |> select(-elev_rast) |> unnest_wider(elev_sum) |> arrange(desc(elev_mean)) |> print(width = 44)
# A tibble: 16 × 4 nuts elev_min elev_max elev_mean <chr> <int> <int> <dbl> 1 DE2 145 1755 518. 2 DE1 90 1074 498. 3 DEG 148 740 367. 4 DEB 84 590 321. 5 DEC 212 486 313. 6 DED 81 891 305. 7 DE7 83 737 302. 8 DEA 14 679 179. 9 DEE 19 580 116. 10 DE9 -8 714 71.711 DE4 1 156 63.812 DE3 39 51 43.713 DE8 -4 116 38.514 DEF -21 78 19.915 DE6 -5 48 15.316 DE5 -1 17 4.8
{sf} Function Reference. https://r-spatial.github.io/sf/reference/index.html
Lovelace, R., Nowosad, J. & Muenchow, J. (2019). Geocomputation with R. CRC Press. https://r.geocompx.org/
Pebesma, E., & Bivand, R. (2023). Spatial Data Science: With Applications in R. Chapman and Hall/CRC. https://r-spatial.org/book/
library(sf)library(tidyverse)us_states_albers <- read_rds( "https://github.com/hrbrmstr/albersusa/raw/master/inst/extdata/states_sf.rda") |> select(fips_state, name) |> st_transform("EPSG:2163") |> rmapshaper::ms_simplify()write_sf(us_states_albers, "slides/data/us-states-albers.geojson")
us_pop <- httr::GET( "https://api.census.gov/data/2018/pep/population?get=POP&for=state:*") |> httr::content() |> tail(-1) |> map(set_names, "pop18", "fips_state") |> bind_rows() |> mutate(pop18 = as.numeric(pop18))
us_votes <- read_csv( "https://github.com/walkerke/census-with-r-book/raw/master/data/us_vote_2020.csv") |> select(state, called) |> left_join(x = st_drop_geometry(us_states_albers), by = join_by(name == state)) |> left_join(us_pop, by = join_by(fips_state))write_rds(us_votes, "slides/data/us_votes.rds")
giscoR::gisco_get_nuts(epsg = "3035", country = "DE", nuts_level = 3) |> select(nuts = NUTS_ID, name = NAME_LATN) |> write_sf("slides/data/de-nuts3.geojson")
IsoriX::ElevRasterDE |> rast() |> `names<-`("elev") |> writeRaster("slides/data/de_elevation.tif", datatype = "INT2S")
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |